BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

223 related articles for article (PubMed ID: 22056517)

  • 1. Functional proton transfer pathways in the heme-copper oxidase superfamily.
    Lee HJ; Reimann J; Huang Y; Adelroth P
    Biochim Biophys Acta; 2012 Apr; 1817(4):537-44. PubMed ID: 22056517
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The heme-copper oxidase superfamily shares a Zn2+-binding motif at the entrance to a proton pathway.
    Lee HJ; Ädelroth P
    FEBS Lett; 2013 Mar; 587(6):770-4. PubMed ID: 23399935
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Comparative genomics and site-directed mutagenesis support the existence of only one input channel for protons in the C-family (cbb3 oxidase) of heme-copper oxygen reductases.
    Hemp J; Han H; Roh JH; Kaplan S; Martinez TJ; Gennis RB
    Biochemistry; 2007 Sep; 46(35):9963-72. PubMed ID: 17676874
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Substrate binding and the catalytic reactions in cbb3-type oxidases: the lipid membrane modulates ligand binding.
    Huang Y; Reimann J; Singh LM; Adelroth P
    Biochim Biophys Acta; 2010; 1797(6-7):724-31. PubMed ID: 20307490
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The mechanism for oxygen reduction in cytochrome c dependent nitric oxide reductase (cNOR) as obtained from a combination of theoretical and experimental results.
    Blomberg MRA; Ädelroth P
    Biochim Biophys Acta Bioenerg; 2017 Nov; 1858(11):884-894. PubMed ID: 28801051
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Proton transfer in ba(3) cytochrome c oxidase from Thermus thermophilus.
    von Ballmoos C; Adelroth P; Gennis RB; Brzezinski P
    Biochim Biophys Acta; 2012 Apr; 1817(4):650-7. PubMed ID: 22172736
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Proton translocation by bacteriorhodopsin and heme-copper oxidases.
    Wikström M
    Curr Opin Struct Biol; 1998 Aug; 8(4):480-8. PubMed ID: 9729741
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Explaining leak states in the proton pump of heme-copper oxidases observed in single-molecule experiments.
    Palese LL
    Biophys Chem; 2020 Jan; 256():106276. PubMed ID: 31731070
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The role of the D- and K-pathways of proton transfer in the function of the haem-copper oxidases.
    Wikström M; Jasaitis A; Backgren C; Puustinen A; Verkhovsky MI
    Biochim Biophys Acta; 2000 Aug; 1459(2-3):514-20. PubMed ID: 11004470
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The cytochrome ba3 oxygen reductase from Thermus thermophilus uses a single input channel for proton delivery to the active site and for proton pumping.
    Chang HY; Hemp J; Chen Y; Fee JA; Gennis RB
    Proc Natl Acad Sci U S A; 2009 Sep; 106(38):16169-73. PubMed ID: 19805275
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Design principles of proton-pumping haem-copper oxidases.
    Brzezinski P; Adelroth P
    Curr Opin Struct Biol; 2006 Aug; 16(4):465-72. PubMed ID: 16842995
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The causes of reduced proton-pumping efficiency in type B and C respiratory heme-copper oxidases, and in some mutated variants of type A.
    Rauhamäki V; Wikström M
    Biochim Biophys Acta; 2014 Jul; 1837(7):999-1003. PubMed ID: 24583065
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Nitric oxide reductases of prokaryotes with emphasis on the respiratory, heme-copper oxidase type.
    Zumft WG
    J Inorg Biochem; 2005 Jan; 99(1):194-215. PubMed ID: 15598502
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Vectorial proton transfer coupled to reduction of O2 and NO by a heme-copper oxidase.
    Huang Y; Reimann J; Lepp H; Drici N; Adelroth P
    Proc Natl Acad Sci U S A; 2008 Dec; 105(51):20257-62. PubMed ID: 19074284
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A common coupling mechanism for A-type heme-copper oxidases from bacteria to mitochondria.
    Maréchal A; Xu JY; Genko N; Hartley AM; Haraux F; Meunier B; Rich PR
    Proc Natl Acad Sci U S A; 2020 Apr; 117(17):9349-9355. PubMed ID: 32291342
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Specific inhibition of proton pumping by the T315V mutation in the K channel of cytochrome ba
    Siletsky SA; Soulimane T; Belevich I; Gennis RB; Wikström M
    Biochim Biophys Acta Bioenerg; 2021 Sep; 1862(9):148450. PubMed ID: 34022199
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Timing of electron and proton transfer in the ba(3) cytochrome c oxidase from Thermus thermophilus.
    von Ballmoos C; Lachmann P; Gennis RB; Ädelroth P; Brzezinski P
    Biochemistry; 2012 Jun; 51(22):4507-17. PubMed ID: 22624600
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A novel scenario for the evolution of haem-copper oxygen reductases.
    Pereira MM; Santana M; Teixeira M
    Biochim Biophys Acta; 2001 Jun; 1505(2-3):185-208. PubMed ID: 11334784
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A chemically explicit model for the mechanism of proton pumping in heme-copper oxidases.
    Sharpe MA; Ferguson-Miller S
    J Bioenerg Biomembr; 2008 Oct; 40(5):541-9. PubMed ID: 18830692
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A cooperative model for proton pumping in cytochrome c oxidase.
    Papa S; Capitanio N; Capitanio G
    Biochim Biophys Acta; 2004 Apr; 1655(1-3):353-64. PubMed ID: 15100051
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.