These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

368 related articles for article (PubMed ID: 22056715)

  • 1. Classification of scaffold-hopping approaches.
    Sun H; Tawa G; Wallqvist A
    Drug Discov Today; 2012 Apr; 17(7-8):310-24. PubMed ID: 22056715
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Intuitive ordering of scaffolds and scaffold similarity searching using scaffold keys.
    Ertl P
    J Chem Inf Model; 2014 Jun; 54(6):1617-22. PubMed ID: 24846291
    [TBL] [Abstract][Full Text] [Related]  

  • 3. BioCores: identification of a drug/natural product-based privileged structural motif for small-molecule lead discovery.
    Kombarov R; Altieri A; Genis D; Kirpichenok M; Kochubey V; Rakitina N; Titarenko Z
    Mol Divers; 2010 Feb; 14(1):193-200. PubMed ID: 19468851
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Targeting cancer using scaffold-hopping approaches: illuminating SAR to improve drug design.
    Shivani ; Abdul Rahaman TA; Chaudhary S
    Drug Discov Today; 2024 Sep; 29(9):104115. PubMed ID: 39067613
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Quest for the rings. In silico exploration of ring universe to identify novel bioactive heteroaromatic scaffolds.
    Ertl P; Jelfs S; Mühlbacher J; Schuffenhauer A; Selzer P
    J Med Chem; 2006 Jul; 49(15):4568-73. PubMed ID: 16854061
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Recent Advances in Scaffold Hopping.
    Hu Y; Stumpfe D; Bajorath J
    J Med Chem; 2017 Feb; 60(4):1238-1246. PubMed ID: 28001064
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Agrochemical lead optimization by scaffold hopping.
    Lamberth C
    Pest Manag Sci; 2018 Feb; 74(2):282-292. PubMed ID: 28991418
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Approaches to Scaffold Hopping.
    Lloyd DG
    Drug Discov Today Technol; 2013 Dec; 10(4):e451-2. PubMed ID: 24451633
    [No Abstract]   [Full Text] [Related]  

  • 9. Recent Scaffold Hopping Applications in Central Nervous System Drug Discovery.
    Callis TB; Garrett TR; Montgomery AP; Danon JJ; Kassiou M
    J Med Chem; 2022 Oct; 65(20):13483-13504. PubMed ID: 36206553
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Improving drug candidates by design: a focus on physicochemical properties as a means of improving compound disposition and safety.
    Meanwell NA
    Chem Res Toxicol; 2011 Sep; 24(9):1420-56. PubMed ID: 21790149
    [TBL] [Abstract][Full Text] [Related]  

  • 11. C-H activation reactions as useful tools for medicinal chemists.
    Caro-Diaz EJE; Urbano M; Buzard DJ; Jones RM
    Bioorg Med Chem Lett; 2016 Nov; 26(22):5378-5383. PubMed ID: 27765505
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Bioisosteric heterocyclic analogues of natural bioactive flavonoids by scaffold-hopping approaches: State-of-the-art and perspectives in medicinal chemistry.
    La Monica G; Bono A; Alamia F; Lauria A; Martorana A
    Bioorg Med Chem; 2024 Jul; 109():117791. PubMed ID: 38870715
    [TBL] [Abstract][Full Text] [Related]  

  • 13. In Silico Laboratory: Tools for Similarity-Based Drug Discovery.
    Lešnik S; Konc J
    Methods Mol Biol; 2020; 2089():1-28. PubMed ID: 31773644
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Scaffold hopping approaches for dual-target antitumor drug discovery: opportunities and challenges.
    Mishra A; Thakur A; Sharma R; Onuku R; Kaur C; Liou JP; Hsu SP; Nepali K
    Expert Opin Drug Discov; 2024 Nov; 19(11):1355-1381. PubMed ID: 39420580
    [TBL] [Abstract][Full Text] [Related]  

  • 15. ScafBank: a public comprehensive Scaffold database to support molecular hopping.
    Yan BB; Xue MZ; Xiong B; Liu K; Hu DY; Shen JK
    Acta Pharmacol Sin; 2009 Feb; 30(2):251-8. PubMed ID: 19151741
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Scaffold-hopping potential of fragment-based de novo design: the chances and limits of variation.
    Krueger BA; Dietrich A; Baringhaus KH; Schneider G
    Comb Chem High Throughput Screen; 2009 May; 12(4):383-96. PubMed ID: 19442066
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Systematic assessment of scaffold distances in ChEMBL: prioritization of compound data sets for scaffold hopping analysis in virtual screening.
    Li R; Bajorath J
    J Comput Aided Mol Des; 2012 Oct; 26(10):1101-9. PubMed ID: 22972561
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The chemistry and biological activity of heterocycle-fused quinolinone derivatives: A review.
    Shiro T; Fukaya T; Tobe M
    Eur J Med Chem; 2015 Jun; 97():397-408. PubMed ID: 25532473
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Is chemical synthetic accessibility computationally predictable for drug and lead-like molecules? A comparative assessment between medicinal and computational chemists.
    Bonnet P
    Eur J Med Chem; 2012 Aug; 54():679-89. PubMed ID: 22749644
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Quinoline-derivatives as privileged scaffolds for medicinal and pharmaceutical chemists: A comprehensive review.
    Yadav V; Reang J; Sharma V; Majeed J; Sharma PC; Sharma K; Giri N; Kumar A; Tonk RK
    Chem Biol Drug Des; 2022 Sep; 100(3):389-418. PubMed ID: 35712793
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 19.