BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

98 related articles for article (PubMed ID: 22056789)

  • 1. Contribution of lateral gene transfer to the gene repertoire of a gut-adapted methanogen.
    Lurie-Weinberger MN; Peeri M; Gophna U
    Genomics; 2012 Jan; 99(1):52-8. PubMed ID: 22056789
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Pan-genome of the dominant human gut-associated archaeon, Methanobrevibacter smithii, studied in twins.
    Hansen EE; Lozupone CA; Rey FE; Wu M; Guruge JL; Narra A; Goodfellow J; Zaneveld JR; McDonald DT; Goodrich JA; Heath AC; Knight R; Gordon JI
    Proc Natl Acad Sci U S A; 2011 Mar; 108 Suppl 1(Suppl 1):4599-606. PubMed ID: 21317366
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Extensive Inter-Domain Lateral Gene Transfer in the Evolution of the Human Commensal Methanosphaera stadtmanae.
    Lurie-Weinberger MN; Peeri M; Tuller T; Gophna U
    Front Genet; 2012; 3():182. PubMed ID: 23049536
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Genomic and metabolic adaptations of Methanobrevibacter smithii to the human gut.
    Samuel BS; Hansen EE; Manchester JK; Coutinho PM; Henrissat B; Fulton R; Latreille P; Kim K; Wilson RK; Gordon JI
    Proc Natl Acad Sci U S A; 2007 Jun; 104(25):10643-8. PubMed ID: 17563350
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The smallest active carbamoyl phosphate synthetase was identified in the human gut archaeon Methanobrevibacter smithii.
    Popa E; Perera N; Kibédi-Szabó CZ; Guy-Evans H; Evans DR; Purcarea C
    J Mol Microbiol Biotechnol; 2012; 22(5):287-99. PubMed ID: 23107800
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mutual Exclusion of
    Low A; Lee JKY; Gounot JS; Ravikrishnan A; Ding Y; Saw WY; Tan LWL; Moong DKN; Teo YY; Nagarajan N; Seedorf H
    Microbiol Spectr; 2022 Aug; 10(4):e0084922. PubMed ID: 35699469
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Syntrophy via Interspecies H
    Ruaud A; Esquivel-Elizondo S; de la Cuesta-Zuluaga J; Waters JL; Angenent LT; Youngblut ND; Ley RE
    mBio; 2020 Feb; 11(1):. PubMed ID: 32019803
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Archaeal microbiota population in piglet feces shifts in response to weaning: Methanobrevibacter smithii is replaced with Methanobrevibacter boviskoreani.
    Federici S; Miragoli F; Pisacane V; Rebecchi A; Morelli L; Callegari ML
    FEMS Microbiol Lett; 2015 May; 362(10):. PubMed ID: 25903267
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Diversity of human-associated Methanobrevibacter smithii isolates revealed by multispacer sequence typing.
    Nkamga VD; Huynh HT; Aboudharam G; Ruimy R; Drancourt M
    Curr Microbiol; 2015 Jun; 70(6):810-5. PubMed ID: 25708582
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Horizontal gene acquisitions by eukaryotes as drivers of adaptive evolution.
    Schönknecht G; Weber AP; Lercher MJ
    Bioessays; 2014 Jan; 36(1):9-20. PubMed ID: 24323918
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Characterization of the ATP-Dependent Lon-Like Protease in Methanobrevibacter smithii.
    Pei J; Yan J; Jiang Y
    Archaea; 2016; 2016():5759765. PubMed ID: 27239160
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Methanobrevibacter smithii, a methanogen consistently colonising the newborn stomach.
    Grine G; Boualam MA; Drancourt M
    Eur J Clin Microbiol Infect Dis; 2017 Dec; 36(12):2449-2455. PubMed ID: 28823095
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A real-time qPCR assay for the detection of the nifH gene of Methanobrevibacter smithii, a potential indicator of sewage pollution.
    Johnston C; Ufnar JA; Griffith JF; Gooch JA; Stewart JR
    J Appl Microbiol; 2010 Dec; 109(6):1946-56. PubMed ID: 21070516
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Comparison of 16S rRNA gene sequences of genus Methanobrevibacter.
    Dighe AS; Jangid K; González JM; Pidiyar VJ; Patole MS; Ranade DR; Shouche YS
    BMC Microbiol; 2004 May; 4():20. PubMed ID: 15128464
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Age-related prevalence of Methanomassiliicoccus luminyensis in the human gut microbiome.
    Dridi B; Henry M; Richet H; Raoult D; Drancourt M
    APMIS; 2012 Oct; 120(10):773-7. PubMed ID: 22958284
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The Draft Genome of the Non-Host-Associated
    Poehlein A; Daniel R; Seedorf H
    Archaea; 2017; 2017():4097425. PubMed ID: 28634433
    [No Abstract]   [Full Text] [Related]  

  • 17. Interdomain transfers of sugar transporters overcome barriers to gene expression.
    Noll KM; Thirangoon K
    Methods Mol Biol; 2009; 532():309-22. PubMed ID: 19271193
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Lateral gene transfer of an ABC transporter complex between major constituents of the human gut microbiome.
    Meehan CJ; Beiko RG
    BMC Microbiol; 2012 Nov; 12():248. PubMed ID: 23116195
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Evolution of mal ABC transporter operons in the Thermococcales and Thermotogales.
    Noll KM; Lapierre P; Gogarten JP; Nanavati DM
    BMC Evol Biol; 2008 Jan; 8():7. PubMed ID: 18197971
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Bacterial origin of a diverse family of UDP-glycosyltransferase genes in the Tetranychus urticae genome.
    Ahn SJ; Dermauw W; Wybouw N; Heckel DG; Van Leeuwen T
    Insect Biochem Mol Biol; 2014 Jul; 50():43-57. PubMed ID: 24727020
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.