BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

242 related articles for article (PubMed ID: 22056798)

  • 1. DIGE and iTRAQ as biomarker discovery tools in aquatic toxicology.
    Martyniuk CJ; Alvarez S; Denslow ND
    Ecotoxicol Environ Saf; 2012 Feb; 76(2):3-10. PubMed ID: 22056798
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Quantitative proteomics in teleost fish: insights and challenges for neuroendocrine and neurotoxicology research.
    Martyniuk CJ; Popesku JT; Chown B; Denslow ND; Trudeau VL
    Gen Comp Endocrinol; 2012 May; 176(3):314-20. PubMed ID: 22202605
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Towards functional genomics in fish using quantitative proteomics.
    Martyniuk CJ; Denslow ND
    Gen Comp Endocrinol; 2009; 164(2-3):135-41. PubMed ID: 19523377
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Next-generation proteomics: toward customized biomarkers for environmental biomonitoring.
    Trapp J; Armengaud J; Salvador A; Chaumot A; Geffard O
    Environ Sci Technol; 2014 Dec; 48(23):13560-72. PubMed ID: 25345346
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Ecotoxicoproteomics: A decade of progress in our understanding of anthropogenic impact on the environment.
    Gouveia D; Almunia C; Cogne Y; Pible O; Degli-Esposti D; Salvador A; Cristobal S; Sheehan D; Chaumot A; Geffard O; Armengaud J
    J Proteomics; 2019 Apr; 198():66-77. PubMed ID: 30529745
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mass spectrometry in environmental toxicology.
    Groh KJ; Suter MJ
    Chimia (Aarau); 2014; 68(3):140-5. PubMed ID: 24801844
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Exploring androgen-regulated pathways in teleost fish using transcriptomics and proteomics.
    Martyniuk CJ; Denslow ND
    Integr Comp Biol; 2012 Nov; 52(5):695-704. PubMed ID: 22596056
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mechanistic research in aquatic toxicology: perspectives and future directions.
    Hahn ME
    Aquat Toxicol; 2011 Oct; 105(3-4 Suppl):67-71. PubMed ID: 22099346
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Comparative study of three proteomic quantitative methods, DIGE, cICAT, and iTRAQ, using 2D gel- or LC-MALDI TOF/TOF.
    Wu WW; Wang G; Baek SJ; Shen RF
    J Proteome Res; 2006 Mar; 5(3):651-8. PubMed ID: 16512681
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Application of 2D-DIGE and iTRAQ Workflows to Analyze CSF in Gliomas.
    Rao AA; Mehta K; Gahoi N; Srivastava S
    Methods Mol Biol; 2019; 2044():81-110. PubMed ID: 31432408
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Ecotoxicoproteomics in gills of the sentinel fish species, Cottus gobio, exposed to perfluorooctane sulfonate (PFOS).
    Dorts J; Kestemont P; Marchand PA; D'Hollander W; Thézenas ML; Raes M; Silvestre F
    Aquat Toxicol; 2011 May; 103(1-2):1-8. PubMed ID: 21392490
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Prevalidation of potential protein biomarkers in toxicology using iTRAQ reagent technology.
    Glückmann M; Fella K; Waidelich D; Merkel D; Kruft V; Kramer PJ; Walter Y; Hellmann J; Karas M; Kröger M
    Proteomics; 2007 May; 7(10):1564-74. PubMed ID: 17443845
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Comprehensive proteomic analysis of protein changes during platelet storage requires complementary proteomic approaches.
    Thon JN; Schubert P; Duguay M; Serrano K; Lin S; Kast J; Devine DV
    Transfusion; 2008 Mar; 48(3):425-35. PubMed ID: 18067510
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Proteomics technologies for the global identification and quantification of proteins.
    Brewis IA; Brennan P
    Adv Protein Chem Struct Biol; 2010; 80():1-44. PubMed ID: 21109216
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Quantitative proteomics for cancer biomarker discovery.
    Liang S; Xu Z; Xu X; Zhao X; Huang C; Wei Y
    Comb Chem High Throughput Screen; 2012 Mar; 15(3):221-31. PubMed ID: 22221055
    [TBL] [Abstract][Full Text] [Related]  

  • 16. High precision quantitative proteomics using iTRAQ on an LTQ Orbitrap: a new mass spectrometric method combining the benefits of all.
    Köcher T; Pichler P; Schutzbier M; Stingl C; Kaul A; Teucher N; Hasenfuss G; Penninger JM; Mechtler K
    J Proteome Res; 2009 Oct; 8(10):4743-52. PubMed ID: 19663507
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Performance of isobaric and isotopic labeling in quantitative plant proteomics.
    Nogueira FC; Palmisano G; Schwämmle V; Campos FA; Larsen MR; Domont GB; Roepstorff P
    J Proteome Res; 2012 May; 11(5):3046-52. PubMed ID: 22452248
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Moving beyond a descriptive aquatic toxicology: the value of biological process and trait information.
    Segner H
    Aquat Toxicol; 2011 Oct; 105(3-4 Suppl):50-5. PubMed ID: 22099344
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Protecting our environment, a motivating outdoor game for proteomics!
    Armengaud J
    Proteomics; 2022 May; 22(10):e2200055. PubMed ID: 35452157
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Assessing the relevance of a multiplexed methodology for proteomic biomarker measurement in the invertebrate species Gammarus fossarum: A physiological and ecotoxicological study.
    Gouveia D; Chaumot A; Charnot A; Queau H; Armengaud J; Almunia C; Salvador A; Geffard O
    Aquat Toxicol; 2017 Sep; 190():199-209. PubMed ID: 28750222
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.