These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

196 related articles for article (PubMed ID: 22056981)

  • 1. Lipid-protein nanodiscs for cell-free production of integral membrane proteins in a soluble and folded state: comparison with detergent micelles, bicelles and liposomes.
    Lyukmanova EN; Shenkarev ZO; Khabibullina NF; Kopeina GS; Shulepko MA; Paramonov AS; Mineev KS; Tikhonov RV; Shingarova LN; Petrovskaya LE; Dolgikh DA; Arseniev AS; Kirpichnikov MP
    Biochim Biophys Acta; 2012 Mar; 1818(3):349-58. PubMed ID: 22056981
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Lipid-protein nanodiscs promote in vitro folding of transmembrane domains of multi-helical and multimeric membrane proteins.
    Shenkarev ZO; Lyukmanova EN; Butenko IO; Petrovskaya LE; Paramonov AS; Shulepko MA; Nekrasova OV; Kirpichnikov MP; Arseniev AS
    Biochim Biophys Acta; 2013 Feb; 1828(2):776-84. PubMed ID: 23159810
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Screening for lipid requirements of membrane proteins by combining cell-free expression with nanodiscs.
    Henrich E; Dötsch V; Bernhard F
    Methods Enzymol; 2015; 556():351-69. PubMed ID: 25857790
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Lipid-protein nanodiscs as reference medium in detergent screening for high-resolution NMR studies of integral membrane proteins.
    Shenkarev ZO; Lyukmanova EN; Paramonov AS; Shingarova LN; Chupin VV; Kirpichnikov MP; Blommers MJ; Arseniev AS
    J Am Chem Soc; 2010 Apr; 132(16):5628-9. PubMed ID: 20356311
    [TBL] [Abstract][Full Text] [Related]  

  • 5. From Nanodiscs to Isotropic Bicelles: A Procedure for Solution Nuclear Magnetic Resonance Studies of Detergent-Sensitive Integral Membrane Proteins.
    Laguerre A; Löhr F; Henrich E; Hoffmann B; Abdul-Manan N; Connolly PJ; Perozo E; Moore JM; Bernhard F; Dötsch V
    Structure; 2016 Oct; 24(10):1830-1841. PubMed ID: 27618661
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Lipid Membrane Mimetics in Functional and Structural Studies of Integral Membrane Proteins.
    Majeed S; Ahmad AB; Sehar U; Georgieva ER
    Membranes (Basel); 2021 Sep; 11(9):. PubMed ID: 34564502
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Modulation of protein function in membrane mimetics: Characterization of P. denitrificans cNOR in nanodiscs or liposomes.
    Ter Beek J; Kahle M; Ädelroth P
    Biochim Biophys Acta Biomembr; 2017 Oct; 1859(10):1951-1961. PubMed ID: 28668220
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Integral membrane proteins in nanodiscs can be studied by solution NMR spectroscopy.
    Glück JM; Wittlich M; Feuerstein S; Hoffmann S; Willbold D; Koenig BW
    J Am Chem Soc; 2009 Sep; 131(34):12060-1. PubMed ID: 19663495
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Evidence that bilayer bending rigidity affects membrane protein folding.
    Booth PJ; Riley ML; Flitsch SL; Templer RH; Farooq A; Curran AR; Chadborn N; Wright P
    Biochemistry; 1997 Jan; 36(1):197-203. PubMed ID: 8993334
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Lipid-protein nanodiscs: possible application in high-resolution NMR investigations of membrane proteins and membrane-active peptides.
    Shenkarev ZO; Lyukmanova EN; Solozhenkin OI; Gagnidze IE; Nekrasova OV; Chupin VV; Tagaev AA; Yakimenko ZA; Ovchinnikova TV; Kirpichnikov MP; Arseniev AS
    Biochemistry (Mosc); 2009 Jul; 74(7):756-65. PubMed ID: 19747096
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Detergents in Membrane Protein Purification and Crystallisation.
    Anandan A; Vrielink A
    Adv Exp Med Biol; 2016; 922():13-28. PubMed ID: 27553232
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Thermodynamic characterization of the exchange of detergents and amphipols at the surfaces of integral membrane proteins.
    Tribet C; Diab C; Dahmane T; Zoonens M; Popot JL; Winnik FM
    Langmuir; 2009 Nov; 25(21):12623-34. PubMed ID: 19594168
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Optimizing nanodiscs and bicelles for solution NMR studies of two β-barrel membrane proteins.
    Kucharska I; Edrington TC; Liang B; Tamm LK
    J Biomol NMR; 2015 Apr; 61(3-4):261-74. PubMed ID: 25869397
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Co-translational association of cell-free expressed membrane proteins with supplied lipid bilayers.
    Roos C; Kai L; Proverbio D; Ghoshdastider U; Filipek S; Dötsch V; Bernhard F
    Mol Membr Biol; 2013 Feb; 30(1):75-89. PubMed ID: 22716775
    [TBL] [Abstract][Full Text] [Related]  

  • 15. NMR structural and dynamical investigation of the isolated voltage-sensing domain of the potassium channel KvAP: implications for voltage gating.
    Shenkarev ZO; Paramonov AS; Lyukmanova EN; Shingarova LN; Yakimov SA; Dubinnyi MA; Chupin VV; Kirpichnikov MP; Blommers MJ; Arseniev AS
    J Am Chem Soc; 2010 Apr; 132(16):5630-7. PubMed ID: 20356312
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Functional properties of cell-free expressed human endothelin A and endothelin B receptors in artificial membrane environments.
    Proverbio D; Roos C; Beyermann M; Orbán E; Dötsch V; Bernhard F
    Biochim Biophys Acta; 2013 Sep; 1828(9):2182-92. PubMed ID: 23747296
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Cell-free expressed bacteriorhodopsin in different soluble membrane mimetics: biophysical properties and NMR accessibility.
    Etzkorn M; Raschle T; Hagn F; Gelev V; Rice AJ; Walz T; Wagner G
    Structure; 2013 Mar; 21(3):394-401. PubMed ID: 23415558
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Beyond detergent micelles: The advantages and applications of non-micellar and lipid-based membrane mimetics for solution-state NMR.
    Klöpfer K; Hagn F
    Prog Nucl Magn Reson Spectrosc; 2019; 114-115():271-283. PubMed ID: 31779883
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Lipid-protein nanodiscs offer new perspectives for structural and functional studies of water-soluble membrane-active peptides.
    Shenkarev ZO; Lyukmanova EN; Paramonov AS; Panteleev PV; Balandin SV; Shulepko MA; Mineev KS; Ovchinnikova TV; Kirpichnikov MP; Arseniev AS
    Acta Naturae; 2014 Apr; 6(2):84-94. PubMed ID: 25093115
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Isolation, folding and structural investigations of the amino acid transporter OEP16.
    Ni da Q; Zook J; Klewer DA; Nieman RA; Soll J; Fromme P
    Protein Expr Purif; 2011 Dec; 80(2):157-68. PubMed ID: 21878393
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.