These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

134 related articles for article (PubMed ID: 22057159)

  • 21. WegoLoc: accurate prediction of protein subcellular localization using weighted Gene Ontology terms.
    Chi SM; Nam D
    Bioinformatics; 2012 Apr; 28(7):1028-30. PubMed ID: 22296788
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Assessing protein similarity with Gene Ontology and its use in subnuclear localization prediction.
    Lei Z; Dai Y
    BMC Bioinformatics; 2006 Nov; 7():491. PubMed ID: 17090318
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Exploring information from the topology beneath the Gene Ontology terms to improve semantic similarity measures.
    Zhang SB; Lai JH
    Gene; 2016 Jul; 586(1):148-57. PubMed ID: 27080954
    [TBL] [Abstract][Full Text] [Related]  

  • 24. TransformerGO: predicting protein-protein interactions by modelling the attention between sets of gene ontology terms.
    Ieremie I; Ewing RM; Niranjan M
    Bioinformatics; 2022 Apr; 38(8):2269-2277. PubMed ID: 35176146
    [TBL] [Abstract][Full Text] [Related]  

  • 25. DeepGO: predicting protein functions from sequence and interactions using a deep ontology-aware classifier.
    Kulmanov M; Khan MA; Hoehndorf R; Wren J
    Bioinformatics; 2018 Feb; 34(4):660-668. PubMed ID: 29028931
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Improving the measurement of semantic similarity between gene ontology terms and gene products: insights from an edge- and IC-based hybrid method.
    Wu X; Pang E; Lin K; Pei ZM
    PLoS One; 2013; 8(5):e66745. PubMed ID: 23741529
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Protein complex prediction in large ontology attributed protein-protein interaction networks.
    Zhang Y; Lin H; Yang Z; Wang J; Li Y; Xu B
    IEEE/ACM Trans Comput Biol Bioinform; 2013; 10(3):729-41. PubMed ID: 24091405
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Improving protein function prediction using protein sequence and GO-term similarities.
    Makrodimitris S; van Ham RCHJ; Reinders MJT
    Bioinformatics; 2019 Apr; 35(7):1116-1124. PubMed ID: 30169569
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Evaluation of GO-based functional similarity measures using S. cerevisiae protein interaction and expression profile data.
    Xu T; Du L; Zhou Y
    BMC Bioinformatics; 2008 Nov; 9():472. PubMed ID: 18986551
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Exploring the relationship between hub proteins and drug targets based on GO and intrinsic disorder.
    Fu Y; Guo Y; Wang Y; Luo J; Pu X; Li M; Zhang Z
    Comput Biol Chem; 2015 Jun; 56():41-8. PubMed ID: 25854804
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Detecting Essential Proteins Based on Network Topology, Gene Expression Data, and Gene Ontology Information.
    Zhang W; Xu J; Li Y; Zou X
    IEEE/ACM Trans Comput Biol Bioinform; 2018; 15(1):109-116. PubMed ID: 28650821
    [TBL] [Abstract][Full Text] [Related]  

  • 32. RedNemo: topology-based PPI network reconstruction via repeated diffusion with neighborhood modifications.
    Alkan F; Erten C
    Bioinformatics; 2017 Feb; 33(4):537-544. PubMed ID: 27797764
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Evaluation of gene ontology semantic similarities on protein interaction datasets.
    Chen G; Li J; Wang J
    Int J Bioinform Res Appl; 2013; 9(2):173-83. PubMed ID: 23467062
    [TBL] [Abstract][Full Text] [Related]  

  • 34. GOSemSim: an R package for measuring semantic similarity among GO terms and gene products.
    Yu G; Li F; Qin Y; Bo X; Wu Y; Wang S
    Bioinformatics; 2010 Apr; 26(7):976-8. PubMed ID: 20179076
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Cross-organism learning method to discover new gene functionalities.
    Domeniconi G; Masseroli M; Moro G; Pinoli P
    Comput Methods Programs Biomed; 2016 Apr; 126():20-34. PubMed ID: 26724853
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Ens-PPI: A Novel Ensemble Classifier for Predicting the Interactions of Proteins Using Autocovariance Transformation from PSSM.
    Gao ZG; Wang L; Xia SX; You ZH; Yan X; Zhou Y
    Biomed Res Int; 2016; 2016():4563524. PubMed ID: 27437399
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Construction of ontology augmented networks for protein complex prediction.
    Zhang Y; Lin H; Yang Z; Wang J
    PLoS One; 2013; 8(5):e62077. PubMed ID: 23650509
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Discovering novel protein-protein interactions by measuring the protein semantic similarity from the biomedical literature.
    Chiang JH; Ju JH
    J Bioinform Comput Biol; 2014 Dec; 12(6):1442008. PubMed ID: 25385082
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Graph sharpening plus graph integration: a synergy that improves protein functional classification.
    Shin H; Lisewski AM; Lichtarge O
    Bioinformatics; 2007 Dec; 23(23):3217-24. PubMed ID: 17977886
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Ensemble learning prediction of protein-protein interactions using proteins functional annotations.
    Saha I; Zubek J; Klingström T; Forsberg S; Wikander J; Kierczak M; Maulik U; Plewczynski D
    Mol Biosyst; 2014 Apr; 10(4):820-30. PubMed ID: 24469380
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.