These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

237 related articles for article (PubMed ID: 22057259)

  • 1. A carbon nanoparticle-based low-background biosensing platform for sensitive and label-free fluorescent assay of DNA methylation.
    Ouyang X; Liu J; Li J; Yang R
    Chem Commun (Camb); 2012 Jan; 48(1):88-90. PubMed ID: 22057259
    [TBL] [Abstract][Full Text] [Related]  

  • 2. An enzyme-free and label-free assay for copper(II) ion detection based on self-assembled DNA concatamers and Sybr Green I.
    Ge C; Chen J; Wu W; Fang Z; Chen L; Liu Q; Wang L; Xing X; Zeng L
    Analyst; 2013 Sep; 138(17):4737-40. PubMed ID: 23814784
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Combination of π-π stacking and electrostatic repulsion between carboxylic carbon nanoparticles and fluorescent oligonucleotides for rapid and sensitive detection of thrombin.
    Liu J; Li J; Jiang Y; Yang S; Tan W; Yang R
    Chem Commun (Camb); 2011 Oct; 47(40):11321-3. PubMed ID: 21922082
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Label-free fluorescence strategy for sensitive detection of exonuclease activity using SYBR Green I as probe.
    Xu M; Li B
    Spectrochim Acta A Mol Biomol Spectrosc; 2015; 151():22-6. PubMed ID: 26117197
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Fluorescence detection of coralyne and polyadenylation reaction using an oligonucleotide-based fluorogenic probe.
    Lin YH; Tseng WL
    Chem Commun (Camb); 2011 Oct; 47(39):11134-6. PubMed ID: 21897954
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Nucleic acid detection using carbon nanoparticles as a fluorescent sensing platform.
    Li H; Zhang Y; Wang L; Tian J; Sun X
    Chem Commun (Camb); 2011 Jan; 47(3):961-3. PubMed ID: 21079843
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Highly sensitive fluorescence quantitative detection of specific DNA sequences with molecular beacons and nucleic acid dye SYBR Green I.
    Xiang D; Zhai K; Xiang W; Wang L
    Talanta; 2014 Nov; 129():249-53. PubMed ID: 25127591
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Highly sensitive DNA detection with a combination of 2 DNA-intercalating dyes for microchip electrophoresis.
    Yatsushiro S; Yamaguchi Y; Yamamura S; Shinohara Y; Baba Y; Kataoka M
    J Pharm Biomed Anal; 2011 Apr; 55(1):202-5. PubMed ID: 21247720
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A graphene-enhanced molecular beacon for homogeneous DNA detection.
    Li F; Huang Y; Yang Q; Zhong Z; Li D; Wang L; Song S; Fan C
    Nanoscale; 2010 Jun; 2(6):1021-6. PubMed ID: 20648302
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A graphene platform for sensing biomolecules.
    Lu CH; Yang HH; Zhu CL; Chen X; Chen GN
    Angew Chem Int Ed Engl; 2009; 48(26):4785-7. PubMed ID: 19475600
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Using fluorescent nanoparticles and SYBR Green I based two-color flow cytometry to determine Mycobacterium tuberculosis avoiding false positives.
    Qin D; He X; Wang K; Tan W
    Biosens Bioelectron; 2008 Dec; 24(4):626-31. PubMed ID: 18672354
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A label-free signal amplification assay for DNA detection based on exonuclease III and nucleic acid dye SYBR Green I.
    Zheng A; Luo M; Xiang D; Xiang X; Ji X; He Z
    Talanta; 2013 Sep; 114():49-53. PubMed ID: 23953440
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Label-free fluorescent sensor for lead ion detection based on lead(II)-stabilized G-quadruplex formation.
    Zhan S; Wu Y; Luo Y; Liu L; He L; Xing H; Zhou P
    Anal Biochem; 2014 Oct; 462():19-25. PubMed ID: 24486320
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Highly sensitive and selective detection of Hg(2+) in aqueous solution with mercury-specific DNA and Sybr Green I.
    Wang J; Liu B
    Chem Commun (Camb); 2008 Oct; (39):4759-61. PubMed ID: 18830484
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Synthetic pathways to make nanoparticles fluorescent.
    Sokolova V; Epple M
    Nanoscale; 2011 May; 3(5):1957-62. PubMed ID: 21380471
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mechanism of inhibition of DNA (cytosine C5)-methyltransferases by oligodeoxyribonucleotides containing 5,6-dihydro-5-azacytosine.
    Sheikhnejad G; Brank A; Christman JK; Goddard A; Alvarez E; Ford H; Marquez VE; Marasco CJ; Sufrin JR; O'gara M; Cheng X
    J Mol Biol; 1999 Feb; 285(5):2021-34. PubMed ID: 9925782
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Highly sensitive and selective detection of thiol-containing biomolecules using DNA-templated silver deposition.
    Lin Y; Tao Y; Ren J; Pu F; Qu X
    Biosens Bioelectron; 2011 Oct; 28(1):339-43. PubMed ID: 21824759
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A label-free fluorescence DNA probe based on ligation reaction with quadruplex formation for highly sensitive and selective detection of nicotinamide adenine dinucleotide.
    Zhao J; Zhang L; Jiang J; Shen G; Yu R
    Chem Commun (Camb); 2012 May; 48(37):4468-70. PubMed ID: 22456321
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Sensitive detection of proteins using assembled cascade fluorescent DNA nanotags based on rolling circle amplification.
    Xue Q; Wang Z; Wang L; Jiang W
    Bioconjug Chem; 2012 Apr; 23(4):734-9. PubMed ID: 22384977
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Improving the understanding of oligonucleotide-nanoparticle conjugates using DNA-binding fluorophores.
    Guerrini L; Barrett L; Dougan JA; Faulds K; Graham D
    Nanoscale; 2013 May; 5(10):4166-70. PubMed ID: 23598624
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.