BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

293 related articles for article (PubMed ID: 22057304)

  • 1. A graphene nanoribbon network and its biosensing application.
    Dong X; Long Q; Wang J; Chan-Park MB; Huang Y; Huang W; Chen P
    Nanoscale; 2011 Dec; 3(12):5156-60. PubMed ID: 22057304
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A high sensitivity field effect transistor biosensor for methylene blue detection utilize graphene oxide nanoribbon.
    Lin TC; Li YS; Chiang WH; Pei Z
    Biosens Bioelectron; 2017 Mar; 89(Pt 1):511-517. PubMed ID: 27020064
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Sensitive electrochemical sensing for polycyclic aromatic amines based on a novel core-shell multiwalled carbon nanotubes@ graphene oxide nanoribbons heterostructure.
    Zhu G; Yi Y; Han Z; Wang K; Wu X
    Anal Chim Acta; 2014 Oct; 845():30-7. PubMed ID: 25201269
    [TBL] [Abstract][Full Text] [Related]  

  • 4. An ATP-responsive smart gate fabricated with a graphene oxide-aptamer-nanochannel architecture.
    Zhu X; Zhang B; Ye Z; Shi H; Shen Y; Li G
    Chem Commun (Camb); 2015 Jan; 51(4):640-3. PubMed ID: 25406894
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Microwave-assisted synthesis of a core-shell MWCNT/GONR heterostructure for the electrochemical detection of ascorbic acid, dopamine, and uric acid.
    Sun CL; Chang CT; Lee HH; Zhou J; Wang J; Sham TK; Pong WF
    ACS Nano; 2011 Oct; 5(10):7788-95. PubMed ID: 21910421
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Centimeter-long and large-scale micropatterns of reduced graphene oxide films: fabrication and sensing applications.
    He Q; Sudibya HG; Yin Z; Wu S; Li H; Boey F; Huang W; Chen P; Zhang H
    ACS Nano; 2010 Jun; 4(6):3201-8. PubMed ID: 20441213
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Graphene nanonet for biological sensing applications.
    Kim T; Park J; Jin HJ; Lee H; Byun KE; Lee CS; Kim KS; Hong BH; Kim TH; Hong S
    Nanotechnology; 2013 Sep; 24(37):375302. PubMed ID: 23965436
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Synthesis of short graphene oxide nanoribbons for improved biomarker detection of Parkinson's disease.
    Sun CL; Su CH; Wu JJ
    Biosens Bioelectron; 2015 May; 67():327-33. PubMed ID: 25201013
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Electrical detection of metal ions using field-effect transistors based on micropatterned reduced graphene oxide films.
    Sudibya HG; He Q; Zhang H; Chen P
    ACS Nano; 2011 Mar; 5(3):1990-4. PubMed ID: 21338084
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Electrochemical unzipping of multi-walled carbon nanotubes for facile synthesis of high-quality graphene nanoribbons.
    Shinde DB; Debgupta J; Kushwaha A; Aslam M; Pillai VK
    J Am Chem Soc; 2011 Mar; 133(12):4168-71. PubMed ID: 21388198
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Graphene as a spacer to layer-by-layer assemble electrochemically functionalized nanostructures for molecular bioelectronic devices.
    Wang X; Wang J; Cheng H; Yu P; Ye J; Mao L
    Langmuir; 2011 Sep; 27(17):11180-6. PubMed ID: 21793577
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Highly efficient restoration of graphitic structure in graphene oxide using alcohol vapors.
    Su CY; Xu Y; Zhang W; Zhao J; Liu A; Tang X; Tsai CH; Huang Y; Li LJ
    ACS Nano; 2010 Sep; 4(9):5285-92. PubMed ID: 20718442
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Graphene-based electrochemical sensor for detection of 2,4,6-trinitrotoluene (TNT) in seawater: the comparison of single-, few-, and multilayer graphene nanoribbons and graphite microparticles.
    Goh MS; Pumera M
    Anal Bioanal Chem; 2011 Jan; 399(1):127-31. PubMed ID: 21046081
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Graphene-like 2D nanomaterial-based biointerfaces for biosensing applications.
    Zhu C; Du D; Lin Y
    Biosens Bioelectron; 2017 Mar; 89(Pt 1):43-55. PubMed ID: 27373809
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Formation of nitrogen-doped graphene nanoribbons via chemical unzipping.
    Cruz-Silva R; Morelos-Gómez A; Vega-Díaz S; Tristán-López F; Elias AL; Perea-López N; Muramatsu H; Hayashi T; Fujisawa K; Kim YA; Endo M; Terrones M
    ACS Nano; 2013 Mar; 7(3):2192-204. PubMed ID: 23421313
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Transparent, flexible, all-reduced graphene oxide thin film transistors.
    He Q; Wu S; Gao S; Cao X; Yin Z; Li H; Chen P; Zhang H
    ACS Nano; 2011 Jun; 5(6):5038-44. PubMed ID: 21524119
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Selective electrochemical detection of cysteine in complex serum by graphene nanoribbon.
    Wu S; Lan X; Huang F; Luo Z; Ju H; Meng C; Duan C
    Biosens Bioelectron; 2012 Feb; 32(1):293-6. PubMed ID: 22209073
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Direct electrochemical reduction of graphene oxide on ionic liquid doped screen-printed electrode and its electrochemical biosensing application.
    Ping J; Wang Y; Fan K; Wu J; Ying Y
    Biosens Bioelectron; 2011 Oct; 28(1):204-9. PubMed ID: 21807494
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A switch of the oxidation state of graphene oxide on a surface plasmon resonance chip.
    Xue T; Cui X; Chen J; Liu C; Wang Q; Wang H; Zheng W
    ACS Appl Mater Interfaces; 2013 Mar; 5(6):2096-103. PubMed ID: 23452351
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Self-assembled graphene platelet-glucose oxidase nanostructures for glucose biosensing.
    Liu S; Tian J; Wang L; Luo Y; Lu W; Sun X
    Biosens Bioelectron; 2011 Jul; 26(11):4491-6. PubMed ID: 21652199
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.