These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

288 related articles for article (PubMed ID: 22057304)

  • 1. A graphene nanoribbon network and its biosensing application.
    Dong X; Long Q; Wang J; Chan-Park MB; Huang Y; Huang W; Chen P
    Nanoscale; 2011 Dec; 3(12):5156-60. PubMed ID: 22057304
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A high sensitivity field effect transistor biosensor for methylene blue detection utilize graphene oxide nanoribbon.
    Lin TC; Li YS; Chiang WH; Pei Z
    Biosens Bioelectron; 2017 Mar; 89(Pt 1):511-517. PubMed ID: 27020064
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Sensitive electrochemical sensing for polycyclic aromatic amines based on a novel core-shell multiwalled carbon nanotubes@ graphene oxide nanoribbons heterostructure.
    Zhu G; Yi Y; Han Z; Wang K; Wu X
    Anal Chim Acta; 2014 Oct; 845():30-7. PubMed ID: 25201269
    [TBL] [Abstract][Full Text] [Related]  

  • 4. An ATP-responsive smart gate fabricated with a graphene oxide-aptamer-nanochannel architecture.
    Zhu X; Zhang B; Ye Z; Shi H; Shen Y; Li G
    Chem Commun (Camb); 2015 Jan; 51(4):640-3. PubMed ID: 25406894
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Microwave-assisted synthesis of a core-shell MWCNT/GONR heterostructure for the electrochemical detection of ascorbic acid, dopamine, and uric acid.
    Sun CL; Chang CT; Lee HH; Zhou J; Wang J; Sham TK; Pong WF
    ACS Nano; 2011 Oct; 5(10):7788-95. PubMed ID: 21910421
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Centimeter-long and large-scale micropatterns of reduced graphene oxide films: fabrication and sensing applications.
    He Q; Sudibya HG; Yin Z; Wu S; Li H; Boey F; Huang W; Chen P; Zhang H
    ACS Nano; 2010 Jun; 4(6):3201-8. PubMed ID: 20441213
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Graphene nanonet for biological sensing applications.
    Kim T; Park J; Jin HJ; Lee H; Byun KE; Lee CS; Kim KS; Hong BH; Kim TH; Hong S
    Nanotechnology; 2013 Sep; 24(37):375302. PubMed ID: 23965436
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Synthesis of short graphene oxide nanoribbons for improved biomarker detection of Parkinson's disease.
    Sun CL; Su CH; Wu JJ
    Biosens Bioelectron; 2015 May; 67():327-33. PubMed ID: 25201013
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Electrical detection of metal ions using field-effect transistors based on micropatterned reduced graphene oxide films.
    Sudibya HG; He Q; Zhang H; Chen P
    ACS Nano; 2011 Mar; 5(3):1990-4. PubMed ID: 21338084
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Electrochemical unzipping of multi-walled carbon nanotubes for facile synthesis of high-quality graphene nanoribbons.
    Shinde DB; Debgupta J; Kushwaha A; Aslam M; Pillai VK
    J Am Chem Soc; 2011 Mar; 133(12):4168-71. PubMed ID: 21388198
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Graphene as a spacer to layer-by-layer assemble electrochemically functionalized nanostructures for molecular bioelectronic devices.
    Wang X; Wang J; Cheng H; Yu P; Ye J; Mao L
    Langmuir; 2011 Sep; 27(17):11180-6. PubMed ID: 21793577
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Highly efficient restoration of graphitic structure in graphene oxide using alcohol vapors.
    Su CY; Xu Y; Zhang W; Zhao J; Liu A; Tang X; Tsai CH; Huang Y; Li LJ
    ACS Nano; 2010 Sep; 4(9):5285-92. PubMed ID: 20718442
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Graphene-based electrochemical sensor for detection of 2,4,6-trinitrotoluene (TNT) in seawater: the comparison of single-, few-, and multilayer graphene nanoribbons and graphite microparticles.
    Goh MS; Pumera M
    Anal Bioanal Chem; 2011 Jan; 399(1):127-31. PubMed ID: 21046081
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Graphene-like 2D nanomaterial-based biointerfaces for biosensing applications.
    Zhu C; Du D; Lin Y
    Biosens Bioelectron; 2017 Mar; 89(Pt 1):43-55. PubMed ID: 27373809
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Formation of nitrogen-doped graphene nanoribbons via chemical unzipping.
    Cruz-Silva R; Morelos-Gómez A; Vega-Díaz S; Tristán-López F; Elias AL; Perea-López N; Muramatsu H; Hayashi T; Fujisawa K; Kim YA; Endo M; Terrones M
    ACS Nano; 2013 Mar; 7(3):2192-204. PubMed ID: 23421313
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Transparent, flexible, all-reduced graphene oxide thin film transistors.
    He Q; Wu S; Gao S; Cao X; Yin Z; Li H; Chen P; Zhang H
    ACS Nano; 2011 Jun; 5(6):5038-44. PubMed ID: 21524119
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Selective electrochemical detection of cysteine in complex serum by graphene nanoribbon.
    Wu S; Lan X; Huang F; Luo Z; Ju H; Meng C; Duan C
    Biosens Bioelectron; 2012 Feb; 32(1):293-6. PubMed ID: 22209073
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Direct electrochemical reduction of graphene oxide on ionic liquid doped screen-printed electrode and its electrochemical biosensing application.
    Ping J; Wang Y; Fan K; Wu J; Ying Y
    Biosens Bioelectron; 2011 Oct; 28(1):204-9. PubMed ID: 21807494
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A switch of the oxidation state of graphene oxide on a surface plasmon resonance chip.
    Xue T; Cui X; Chen J; Liu C; Wang Q; Wang H; Zheng W
    ACS Appl Mater Interfaces; 2013 Mar; 5(6):2096-103. PubMed ID: 23452351
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Self-assembled graphene platelet-glucose oxidase nanostructures for glucose biosensing.
    Liu S; Tian J; Wang L; Luo Y; Lu W; Sun X
    Biosens Bioelectron; 2011 Jul; 26(11):4491-6. PubMed ID: 21652199
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.