These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

148 related articles for article (PubMed ID: 22057466)

  • 1. Automated adherent human cell culture (mesenchymal stem cells).
    Thomas R; Ratcliffe E
    Methods Mol Biol; 2012; 806():393-406. PubMed ID: 22057466
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Application of process quality engineering techniques to improve the understanding of the in vitro processing of stem cells for therapeutic use.
    Thomas RJ; Hourd PC; Williams DJ
    J Biotechnol; 2008 Sep; 136(3-4):148-55. PubMed ID: 18672011
    [TBL] [Abstract][Full Text] [Related]  

  • 3. In vitro initial expansion of mesenchymal stem cells is influenced by the culture parameters used in the isolation process.
    Chen HH; Decot V; Ouyang JP; Stoltz JF; Bensoussan D; de Isla NG
    Biomed Mater Eng; 2009; 19(4-5):301-9. PubMed ID: 20042797
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Culturing and differentiating human mesenchymal stem cells for biocompatible scaffolds in regenerative medicine.
    Otto WR; Sarraf CE
    Methods Mol Biol; 2012; 806():407-26. PubMed ID: 22057467
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Automated, serum-free production of CTX0E03: a therapeutic clinical grade human neural stem cell line.
    Thomas RJ; Hope AD; Hourd P; Baradez M; Miljan EA; Sinden JD; Williams DJ
    Biotechnol Lett; 2009 Aug; 31(8):1167-72. PubMed ID: 19343502
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Isolation and culture of rodent bone marrow-derived multipotent mesenchymal stromal cells.
    Nardi NB; Camassola M
    Methods Mol Biol; 2011; 698():151-60. PubMed ID: 21431517
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Microfabricated platform for studying stem cell fates.
    Chin VI; Taupin P; Sanga S; Scheel J; Gage FH; Bhatia SN
    Biotechnol Bioeng; 2004 Nov; 88(3):399-415. PubMed ID: 15486946
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Isolation of human mesenchymal stem cells from bone and adipose tissue.
    Bernacki SH; Wall ME; Loboa EG
    Methods Cell Biol; 2008; 86():257-78. PubMed ID: 18442651
    [No Abstract]   [Full Text] [Related]  

  • 9. A novel automated bioreactor for scalable process optimisation of haematopoietic stem cell culture.
    Ratcliffe E; Glen KE; Workman VL; Stacey AJ; Thomas RJ
    J Biotechnol; 2012 Oct; 161(3):387-90. PubMed ID: 22771559
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Dynamic three-dimensional culture methods enhance mesenchymal stem cell properties and increase therapeutic potential.
    Frith JE; Thomson B; Genever PG
    Tissue Eng Part C Methods; 2010 Aug; 16(4):735-49. PubMed ID: 19811095
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Maximizing the ex vivo expansion of human mesenchymal stem cells using a microcarrier-based stirred culture system.
    Eibes G; dos Santos F; Andrade PZ; Boura JS; Abecasis MM; da Silva CL; Cabral JM
    J Biotechnol; 2010 Apr; 146(4):194-7. PubMed ID: 20188771
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Development of a novel automated cell isolation, expansion, and characterization platform.
    Franscini N; Wuertz K; Patocchi-Tenzer I; Durner R; Boos N; Graf-Hausner U
    J Lab Autom; 2011 Jun; 16(3):204-13. PubMed ID: 21609703
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Versatile, fully automated, microfluidic cell culture system.
    Gómez-Sjöberg R; Leyrat AA; Pirone DM; Chen CS; Quake SR
    Anal Chem; 2007 Nov; 79(22):8557-63. PubMed ID: 17953452
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Isolation, culture, and characterization of human umbilical cord stroma-derived mesenchymal stem cells.
    Can A; Balci D
    Methods Mol Biol; 2011; 698():51-62. PubMed ID: 21431510
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Amniotic and placental mesenchymal stem cell isolation and culture.
    Klein JD; Fauza DO
    Methods Mol Biol; 2011; 698():75-88. PubMed ID: 21431512
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The isolation and culture of human cord blood-derived mesenchymal stem cells under low oxygen conditions.
    Laitinen A; Nystedt J; Laitinen S
    Methods Mol Biol; 2011; 698():63-73. PubMed ID: 21431511
    [TBL] [Abstract][Full Text] [Related]  

  • 17. From bone marrow to therapeutic applications: different behaviour and genetic/epigenetic stability during mesenchymal stem cell expansion in autologous and foetal bovine sera?
    Tonti GA; Mannello F
    Int J Dev Biol; 2008; 52(8):1023-32. PubMed ID: 18956335
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Human cell culture process capability: a comparison of manual and automated production.
    Liu Y; Hourd P; Chandra A; Williams DJ
    J Tissue Eng Regen Med; 2010 Jan; 4(1):45-54. PubMed ID: 19842115
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Characterization of mesenchymal stem cells isolated from murine bone marrow by negative selection.
    Baddoo M; Hill K; Wilkinson R; Gaupp D; Hughes C; Kopen GC; Phinney DG
    J Cell Biochem; 2003 Aug; 89(6):1235-49. PubMed ID: 12898521
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Biomek Cell Workstation: A Variable System for Automated Cell Cultivation.
    Lehmann R; Severitt JC; Roddelkopf T; Junginger S; Thurow K
    J Lab Autom; 2016 Jun; 21(3):439-50. PubMed ID: 26259574
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.