BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

200 related articles for article (PubMed ID: 22057526)

  • 1. Surface plasmon resonance imaging analysis of protein binding to a sialoside-based carbohydrate microarray.
    Linman MJ; Yu H; Chen X; Cheng Q
    Methods Mol Biol; 2012; 808():183-94. PubMed ID: 22057526
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Fabrication and characterization of a sialoside-based carbohydrate microarray biointerface for protein binding analysis with surface plasmon resonance imaging.
    Linman MJ; Yu H; Chen X; Cheng Q
    ACS Appl Mater Interfaces; 2009 Aug; 1(8):1755-62. PubMed ID: 20355792
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Surface plasmon resonance study of protein-carbohydrate interactions using biotinylated sialosides.
    Linman MJ; Taylor JD; Yu H; Chen X; Cheng Q
    Anal Chem; 2008 Jun; 80(11):4007-13. PubMed ID: 18461973
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Characterization of the carbohydrate binding specificity and kinetic parameters of lectins by using surface plasmon resonance.
    Haseley SR; Talaga P; Kamerling JP; Vliegenthart JF
    Anal Biochem; 1999 Oct; 274(2):203-10. PubMed ID: 10527517
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A functional carbohydrate chip platform for analysis of carbohydrate-protein interaction.
    Seo JH; Kim CS; Hwang BH; Cha HJ
    Nanotechnology; 2010 May; 21(21):215101. PubMed ID: 20431189
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Carbohydrate chips for studying high-throughput carbohydrate-protein interactions.
    Park S; Lee MR; Pyo SJ; Shin I
    J Am Chem Soc; 2004 Apr; 126(15):4812-9. PubMed ID: 15080685
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Development of a lectin microarray based on an evanescent-field fluorescence principle.
    Uchiyama N; Kuno A; Koseki-Kuno S; Ebe Y; Horio K; Yamada M; Hirabayashi J
    Methods Enzymol; 2006; 415():341-51. PubMed ID: 17116484
    [TBL] [Abstract][Full Text] [Related]  

  • 8. SPR studies of carbohydrate-lectin interactions as useful tool for screening on lectin sources.
    Vornholt W; Hartmann M; Keusgen M
    Biosens Bioelectron; 2007 Jun; 22(12):2983-8. PubMed ID: 17261364
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Carbohydrate arrays: recent developments in fabrication and detection methods with applications.
    Song EH; Pohl NL
    Curr Opin Chem Biol; 2009 Dec; 13(5-6):626-32. PubMed ID: 19853494
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Quantitative lectin-carbohydrate interaction analysis on solid-phase surfaces using biosensor based on surface plasmon resonance.
    Sota H; Lee RT; Lee YC; Shinohara Y
    Methods Enzymol; 2003; 362():330-40. PubMed ID: 12968374
    [No Abstract]   [Full Text] [Related]  

  • 11. Rapid screening of lectins for multivalency effects with a glycodendrimer microarray.
    Parera Pera N; Branderhorst HM; Kooij R; Maierhofer C; van der Kaaden M; Liskamp RM; Wittmann V; Ruijtenbeek R; Pieters RJ
    Chembiochem; 2010 Sep; 11(13):1896-904. PubMed ID: 20672284
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Profiling of influenza viruses by high-throughput carbohydrate membrane array.
    Lao WI; Wang YF; Kuo YD; Lin CH; Chang TC; Su IJ; Wang JR; Chang CF
    Future Med Chem; 2011 Mar; 3(3):283-96. PubMed ID: 21446843
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Use of glycan microarrays to explore specificity of glycan-binding proteins.
    Smith DF; Song X; Cummings RD
    Methods Enzymol; 2010; 480():417-44. PubMed ID: 20816220
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Carbohydrate immobilized on a dendrimer-coated colloidal gold surface for fabrication of a lectin-sensing device based on localized surface plasmon resonance spectroscopy.
    Ogiso M; Kobayashi J; Imai T; Matsuoka K; Itoh M; Imamura T; Okada T; Miura H; Nishiyama T; Hatanaka K; Minoura N
    Biosens Bioelectron; 2013 Mar; 41():465-70. PubMed ID: 23036773
    [TBL] [Abstract][Full Text] [Related]  

  • 15. High-throughput SPR biosensor.
    Kyo M; Ohtsuka K; Okamoto E; Inamori K
    Methods Mol Biol; 2009; 577():227-34. PubMed ID: 19718520
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Carbohydrate microarrays by microcontact printing.
    Wendeln C; Heile A; Arlinghaus HF; Ravoo BJ
    Langmuir; 2010 Apr; 26(7):4933-40. PubMed ID: 20092308
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Microarray-based study of carbohydrate-protein binding by gold nanoparticle probes.
    Gao J; Liu D; Wang Z
    Anal Chem; 2008 Nov; 80(22):8822-7. PubMed ID: 18855407
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Surface plasmon resonance imaging studies of protein-carbohydrate interactions.
    Smith EA; Thomas WD; Kiessling LL; Corn RM
    J Am Chem Soc; 2003 May; 125(20):6140-8. PubMed ID: 12785845
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Multiplexed binding determination of seven glycoconjugates for Pseudomonas aeruginosa lectin I (PA-IL) using a DNA-based carbohydrate microarray.
    Chevolot Y; Zhang J; Meyer A; Goudot A; Rouanet S; Vidal S; Pourceau G; Cloarec JP; Praly JP; Souteyrand E; Vasseur JJ; Morvan F
    Chem Commun (Camb); 2011 Aug; 47(31):8826-8. PubMed ID: 21748147
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Label-free reading of microarray-based immunoassays with surface plasmon resonance imaging.
    Kanda V; Kariuki JK; Harrison DJ; McDermott MT
    Anal Chem; 2004 Dec; 76(24):7257-62. PubMed ID: 15595867
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.