BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

390 related articles for article (PubMed ID: 22057568)

  • 1. Relation between mitochondrial membrane potential and ROS formation.
    Suski JM; Lebiedzinska M; Bonora M; Pinton P; Duszynski J; Wieckowski MR
    Methods Mol Biol; 2012; 810():183-205. PubMed ID: 22057568
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Relation Between Mitochondrial Membrane Potential and ROS Formation.
    Suski J; Lebiedzinska M; Bonora M; Pinton P; Duszynski J; Wieckowski MR
    Methods Mol Biol; 2018; 1782():357-381. PubMed ID: 29851012
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Pro-oxidant mitochondrial matrix-targeted ubiquinone MitoQ10 acts as anti-oxidant at retarded electron transport or proton pumping within Complex I.
    Plecitá-Hlavatá L; Jezek J; Jezek P
    Int J Biochem Cell Biol; 2009; 41(8-9):1697-707. PubMed ID: 19433311
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Cholestane-3beta,5alpha,6beta-triol-induced reactive oxygen species production promotes mitochondrial dysfunction in isolated mice liver mitochondria.
    Liu H; Wang T; Huang K
    Chem Biol Interact; 2009 May; 179(2-3):81-7. PubMed ID: 19121293
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Estradiol attenuates mitochondrial depolarization in polyol-stressed lens epithelial cells.
    Flynn JM; Cammarata PR
    Mol Vis; 2006 Apr; 12():271-82. PubMed ID: 16617294
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Respiration and ROS production in brain and spinal cord mitochondria of transgenic rats with mutant G93a Cu/Zn-superoxide dismutase gene.
    Panov A; Kubalik N; Zinchenko N; Hemendinger R; Dikalov S; Bonkovsky HL
    Neurobiol Dis; 2011 Oct; 44(1):53-62. PubMed ID: 21745570
    [TBL] [Abstract][Full Text] [Related]  

  • 7. [Role of mitochondria in reactive oxygen species generation and removal; relevance to signaling and programmed cell death].
    Czarna M; Jarmuszkiewicz W
    Postepy Biochem; 2006; 52(2):145-56. PubMed ID: 17078504
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Increased mitochondrial reactive oxygen species production in newborn brain during hypoglycemia.
    McGowan JE; Chen L; Gao D; Trush M; Wei C
    Neurosci Lett; 2006 May; 399(1-2):111-4. PubMed ID: 16490311
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Intracellular generation of reactive oxygen species by mitochondria.
    Nohl H; Gille L; Staniek K
    Biochem Pharmacol; 2005 Mar; 69(5):719-23. PubMed ID: 15710349
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Increased stress-induced generation of reactive oxygen species and apoptosis in human keratoconus fibroblasts.
    Chwa M; Atilano SR; Reddy V; Jordan N; Kim DW; Kenney MC
    Invest Ophthalmol Vis Sci; 2006 May; 47(5):1902-10. PubMed ID: 16638997
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mediating of caspase-independent apoptosis by cadmium through the mitochondria-ROS pathway in MRC-5 fibroblasts.
    Shih CM; Ko WC; Wu JS; Wei YH; Wang LF; Chang EE; Lo TY; Cheng HH; Chen CT
    J Cell Biochem; 2004 Feb; 91(2):384-97. PubMed ID: 14743397
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Respiratory function decline and DNA mutation in mitochondria, oxidative stress and altered gene expression during aging.
    Wei YH; Wu SB; Ma YS; Lee HC
    Chang Gung Med J; 2009; 32(2):113-32. PubMed ID: 19403001
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Tissue-, substrate-, and site-specific characteristics of mitochondrial reactive oxygen species generation.
    Tahara EB; Navarete FD; Kowaltowski AJ
    Free Radic Biol Med; 2009 May; 46(9):1283-97. PubMed ID: 19245829
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Reactive oxygen species and nitric oxide in plant mitochondria: origin and redundant regulatory systems.
    Blokhina O; Fagerstedt KV
    Physiol Plant; 2010 Apr; 138(4):447-62. PubMed ID: 20059731
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mitochondrial metabolic suppression in fasting and daily torpor: consequences for reactive oxygen species production.
    Brown JC; Staples JF
    Physiol Biochem Zool; 2011; 84(5):467-80. PubMed ID: 21897084
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Comparative study of activities in reactive oxygen species production/defense system in mitochondria of rat brain and liver, and their susceptibility to methylmercury toxicity.
    Mori N; Yasutake A; Hirayama K
    Arch Toxicol; 2007 Nov; 81(11):769-76. PubMed ID: 17464500
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Upstream reactive oxidative species (ROS) signals in exogenous oxidative stress-induced mitochondrial dysfunction.
    Lu M; Gong X
    Cell Biol Int; 2009 Jun; 33(6):658-64. PubMed ID: 19376252
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Calcium-induced generation of reactive oxygen species in brain mitochondria is mediated by permeability transition.
    Hansson MJ; Månsson R; Morota S; Uchino H; Kallur T; Sumi T; Ishii N; Shimazu M; Keep MF; Jegorov A; Elmér E
    Free Radic Biol Med; 2008 Aug; 45(3):284-94. PubMed ID: 18466779
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Patupilone-induced apoptosis is mediated by mitochondrial reactive oxygen species through Bim relocalization to mitochondria.
    Khawaja NR; Carré M; Kovacic H; Estève MA; Braguer D
    Mol Pharmacol; 2008 Oct; 74(4):1072-83. PubMed ID: 18593821
    [TBL] [Abstract][Full Text] [Related]  

  • 20. TNF-alpha/cycloheximide-induced apoptosis in intestinal epithelial cells requires Rac1-regulated reactive oxygen species.
    Jin S; Ray RM; Johnson LR
    Am J Physiol Gastrointest Liver Physiol; 2008 Apr; 294(4):G928-37. PubMed ID: 18218673
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 20.