BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

135 related articles for article (PubMed ID: 22057573)

  • 1. Redox equivalents and mitochondrial bioenergetics.
    Roede JR; Go YM; Jones DP
    Methods Mol Biol; 2012; 810():249-80. PubMed ID: 22057573
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Redox Equivalents and Mitochondrial Bioenergetics.
    Roede JR; Go YM; Jones DP
    Methods Mol Biol; 2018; 1782():197-227. PubMed ID: 29851002
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Glutaredoxin 2 catalyzes the reversible oxidation and glutathionylation of mitochondrial membrane thiol proteins: implications for mitochondrial redox regulation and antioxidant DEFENSE.
    Beer SM; Taylor ER; Brown SE; Dahm CC; Costa NJ; Runswick MJ; Murphy MP
    J Biol Chem; 2004 Nov; 279(46):47939-51. PubMed ID: 15347644
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Disruption of mitochondrial redox circuitry in oxidative stress.
    Jones DP
    Chem Biol Interact; 2006 Oct; 163(1-2):38-53. PubMed ID: 16970935
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Protein S-glutathionlyation links energy metabolism to redox signaling in mitochondria.
    Mailloux RJ; Treberg JR
    Redox Biol; 2016 Aug; 8():110-8. PubMed ID: 26773874
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Taurine, glutathione and bioenergetics.
    Hansen SH; Grunnet N
    Adv Exp Med Biol; 2013; 776():3-12. PubMed ID: 23392865
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Redox regulation of mitochondrial proteins and proteomes by cysteine thiol switches.
    Nietzel T; Mostertz J; Hochgräfe F; Schwarzländer M
    Mitochondrion; 2017 Mar; 33():72-83. PubMed ID: 27456428
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Redox-optimized ROS balance: a unifying hypothesis.
    Aon MA; Cortassa S; O'Rourke B
    Biochim Biophys Acta; 2010; 1797(6-7):865-77. PubMed ID: 20175987
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mitochondrial respiratory chain complexes as sources and targets of thiol-based redox-regulation.
    Dröse S; Brandt U; Wittig I
    Biochim Biophys Acta; 2014 Aug; 1844(8):1344-54. PubMed ID: 24561273
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Redox regulation of mitochondrial function with emphasis on cysteine oxidation reactions.
    Mailloux RJ; Jin X; Willmore WG
    Redox Biol; 2014; 2():123-39. PubMed ID: 24455476
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Redox-mediated kick-start of mitochondrial energy metabolism drives resource-efficient seed germination.
    Nietzel T; Mostertz J; Ruberti C; Née G; Fuchs P; Wagner S; Moseler A; Müller-Schüssele SJ; Benamar A; Poschet G; Büttner M; Møller IM; Lillig CH; Macherel D; Wirtz M; Hell R; Finkemeier I; Meyer AJ; Hochgräfe F; Schwarzländer M
    Proc Natl Acad Sci U S A; 2020 Jan; 117(1):741-751. PubMed ID: 31871212
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Modeling of mitochondria bioenergetics using a composable chemiosmotic energy transduction rate law: theory and experimental validation.
    Chang I; Heiske M; Letellier T; Wallace D; Baldi P
    PLoS One; 2011; 6(9):e14820. PubMed ID: 21931590
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The MIA pathway: a key regulator of mitochondrial oxidative protein folding and biogenesis.
    Mordas A; Tokatlidis K
    Acc Chem Res; 2015 Aug; 48(8):2191-9. PubMed ID: 26214018
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Redox proteomics in aging rat brain: involvement of mitochondrial reduced glutathione status and mitochondrial protein oxidation in the aging process.
    Perluigi M; Di Domenico F; Giorgi A; Schininà ME; Coccia R; Cini C; Bellia F; Cambria MT; Cornelius C; Butterfield DA; Calabrese V
    J Neurosci Res; 2010 Dec; 88(16):3498-507. PubMed ID: 20936692
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Crucial yet divergent roles of mitochondrial redox state in skeletal muscle vs. brown adipose tissue energetics.
    Mailloux RJ; Adjeitey CN; Xuan JY; Harper ME
    FASEB J; 2012 Jan; 26(1):363-75. PubMed ID: 21940996
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Nicotinamide nucleotide transhydrogenase is required for brain mitochondrial redox balance under hampered energy substrate metabolism and high-fat diet.
    Francisco A; Ronchi JA; Navarro CDC; Figueira TR; Castilho RF
    J Neurochem; 2018 Dec; 147(5):663-677. PubMed ID: 30281804
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Mitochondrial thiols in the regulation of cell death pathways.
    Yin F; Sancheti H; Cadenas E
    Antioxid Redox Signal; 2012 Dec; 17(12):1714-27. PubMed ID: 22530585
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Differential oxidation of thioredoxin-1, thioredoxin-2, and glutathione by metal ions.
    Hansen JM; Zhang H; Jones DP
    Free Radic Biol Med; 2006 Jan; 40(1):138-45. PubMed ID: 16337887
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Improving mitochondrial function with SS-31 reverses age-related redox stress and improves exercise tolerance in aged mice.
    Campbell MD; Duan J; Samuelson AT; Gaffrey MJ; Merrihew GE; Egertson JD; Wang L; Bammler TK; Moore RJ; White CC; Kavanagh TJ; Voss JG; Szeto HH; Rabinovitch PS; MacCoss MJ; Qian WJ; Marcinek DJ
    Free Radic Biol Med; 2019 Apr; 134():268-281. PubMed ID: 30597195
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Cisplatin-induced nephrotoxicity is associated with oxidative stress, redox state unbalance, impairment of energetic metabolism and apoptosis in rat kidney mitochondria.
    Santos NA; Catão CS; Martins NM; Curti C; Bianchi ML; Santos AC
    Arch Toxicol; 2007 Jul; 81(7):495-504. PubMed ID: 17216432
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.