These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
164 related articles for article (PubMed ID: 22057690)
21. Sulfite Oxidase Catalyzes Single-Electron Transfer at Molybdenum Domain to Reduce Nitrite to Nitric Oxide. Wang J; Krizowski S; Fischer-Schrader K; Niks D; Tejero J; Sparacino-Watkins C; Wang L; Ragireddy V; Frizzell S; Kelley EE; Zhang Y; Basu P; Hille R; Schwarz G; Gladwin MT Antioxid Redox Signal; 2015 Aug; 23(4):283-94. PubMed ID: 25314640 [TBL] [Abstract][Full Text] [Related]
22. The structures of the C185S and C185A mutants of sulfite oxidase reveal rearrangement of the active site. Qiu JA; Wilson HL; Pushie MJ; Kisker C; George GN; Rajagopalan KV Biochemistry; 2010 May; 49(18):3989-4000. PubMed ID: 20356030 [TBL] [Abstract][Full Text] [Related]
23. Short circuiting a sulfite oxidising enzyme with direct electrochemistry: active site substitutions and their effect on catalysis and electron transfer. Rapson TD; Kappler U; Hanson GR; Bernhardt PV Biochim Biophys Acta; 2011 Jan; 1807(1):108-18. PubMed ID: 20863809 [TBL] [Abstract][Full Text] [Related]
24. Pulsed electron paramagnetic resonance spectroscopy of (33)S-labeled molybdenum cofactor in catalytically active bioengineered sulfite oxidase. Klein EL; Belaidi AA; Raitsimring AM; Davis AC; Krämer T; Astashkin AV; Neese F; Schwarz G; Enemark JH Inorg Chem; 2014 Jan; 53(2):961-71. PubMed ID: 24387640 [TBL] [Abstract][Full Text] [Related]
25. The catalytic mechanism for NO production by the mitochondrial enzyme, sulfite oxidase. Mutus B Biochem J; 2019 Jul; 476(13):1955-1956. PubMed ID: 31308158 [TBL] [Abstract][Full Text] [Related]
26. Molecular basis of intramolecular electron transfer in sulfite-oxidizing enzymes is revealed by high resolution structure of a heterodimeric complex of the catalytic molybdopterin subunit and a c-type cytochrome subunit. Kappler U; Bailey S J Biol Chem; 2005 Jul; 280(26):24999-5007. PubMed ID: 15863498 [TBL] [Abstract][Full Text] [Related]
27. Oxygen reactivity of mammalian sulfite oxidase provides a concept for the treatment of sulfite oxidase deficiency. Belaidi AA; Röper J; Arjune S; Krizowski S; Trifunovic A; Schwarz G Biochem J; 2015 Jul; 469(2):211-21. PubMed ID: 26171830 [TBL] [Abstract][Full Text] [Related]
28. Kinetic and structural evidence for the importance of Tyr236 for the integrity of the Mo active site in a bacterial sulfite dehydrogenase. Kappler U; Bailey S; Feng C; Honeychurch MJ; Hanson GR; Bernhardt PV; Tollin G; Enemark JH Biochemistry; 2006 Aug; 45(32):9696-705. PubMed ID: 16893171 [TBL] [Abstract][Full Text] [Related]
29. Chemical systems modeling the d Young CG J Inorg Biochem; 2016 Sep; 162():238-252. PubMed ID: 27432259 [TBL] [Abstract][Full Text] [Related]
30. Effect of solution viscosity on intramolecular electron transfer in sulfite oxidase. Feng C; Kedia RV; Hazzard JT; Hurley JK; Tollin G; Enemark JH Biochemistry; 2002 May; 41(18):5816-21. PubMed ID: 11980485 [TBL] [Abstract][Full Text] [Related]
32. Active-site dynamics and large-scale domain motions of sulfite oxidase: a molecular dynamics study. Pushie MJ; George GN J Phys Chem B; 2010 Mar; 114(9):3266-75. PubMed ID: 20158265 [TBL] [Abstract][Full Text] [Related]
33. A voltammetric study of interdomain electron transfer within sulfite oxidase. Elliott SJ; McElhaney AE; Feng C; Enemark JH; Armstrong FA J Am Chem Soc; 2002 Oct; 124(39):11612-3. PubMed ID: 12296723 [TBL] [Abstract][Full Text] [Related]
34. Structures and reaction pathways of the molybdenum centres of sulfite-oxidizing enzymes by pulsed EPR spectroscopy. Enemark JH; Astashkin AV; Raitsimring AM Biochem Soc Trans; 2008 Dec; 36(Pt 6):1129-33. PubMed ID: 19021510 [TBL] [Abstract][Full Text] [Related]
35. Structure of the molybdenum site in YedY, a sulfite oxidase homologue from Escherichia coli. Havelius KG; Reschke S; Horn S; Döring A; Niks D; Hille R; Schulzke C; Leimkühler S; Haumann M Inorg Chem; 2011 Feb; 50(3):741-8. PubMed ID: 21190337 [TBL] [Abstract][Full Text] [Related]
36. Identity of the exchangeable sulfur-containing ligand at the Mo(V) center of R160Q human sulfite oxidase. Klein EL; Raitsimring AM; Astashkin AV; Rajapakshe A; Johnson-Winters K; Arnold AR; Potapov A; Goldfarb D; Enemark JH Inorg Chem; 2012 Feb; 51(3):1408-18. PubMed ID: 22225516 [TBL] [Abstract][Full Text] [Related]
37. Spectroscopic and kinetic studies of Arabidopsis thaliana sulfite oxidase: nature of the redox-active orbital and electronic structure contributions to catalysis. Hemann C; Hood BL; Fulton M; Hänsch R; Schwarz G; Mendel RR; Kirk ML; Hille R J Am Chem Soc; 2005 Nov; 127(47):16567-77. PubMed ID: 16305246 [TBL] [Abstract][Full Text] [Related]
38. Pulsed ELDOR spectroscopy of the Mo(V)/Fe(III) state of sulfite oxidase prepared by one-electron reduction with Ti(III) citrate. Codd R; Astashkin AV; Pacheco A; Raitsimring AM; Enemark JH J Biol Inorg Chem; 2002 Mar; 7(3):338-50. PubMed ID: 11935358 [TBL] [Abstract][Full Text] [Related]
39. The central active site arginine in sulfite oxidizing enzymes alters kinetic properties by controlling electron transfer and redox interactions. Hsiao JC; McGrath AP; Kielmann L; Kalimuthu P; Darain F; Bernhardt PV; Harmer J; Lee M; Meyers K; Maher MJ; Kappler U Biochim Biophys Acta Bioenerg; 2018 Jan; 1859(1):19-27. PubMed ID: 28986298 [TBL] [Abstract][Full Text] [Related]