These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

422 related articles for article (PubMed ID: 22058578)

  • 1. Natural and Genetically Engineered Proteins for Tissue Engineering.
    Gomes S; Leonor IB; Mano JF; Reis RL; Kaplan DL
    Prog Polym Sci; 2012 Jan; 37(1):1-17. PubMed ID: 22058578
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Protein-engineered biomaterials: highly tunable tissue engineering scaffolds.
    Sengupta D; Heilshorn SC
    Tissue Eng Part B Rev; 2010 Jun; 16(3):285-93. PubMed ID: 20141386
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Peptide ligases: A Novel and potential enzyme toolbox for catalytic cross-linking of protein/peptide-based biomaterial scaffolds for tissue engineering.
    Narayanan KB; Han SS
    Enzyme Microb Technol; 2022 Apr; 155():109990. PubMed ID: 35030384
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Bioactive peptide-modified biomaterials for bone regeneration.
    Lee JY; Choi YS; Lee SJ; Chung CP; Park YJ
    Curr Pharm Des; 2011; 17(25):2663-76. PubMed ID: 21728982
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Biomaterials via peptide assembly: Design, characterization, and application in tissue engineering.
    Gray VP; Amelung CD; Duti IJ; Laudermilch EG; Letteri RA; Lampe KJ
    Acta Biomater; 2022 Mar; 140():43-75. PubMed ID: 34710626
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Macromolecular crowding: chemistry and physics meet biology (Ascona, Switzerland, 10-14 June 2012).
    Foffi G; Pastore A; Piazza F; Temussi PA
    Phys Biol; 2013 Aug; 10(4):040301. PubMed ID: 23912807
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Recent trends in the application of widely used natural and synthetic polymer nanocomposites in bone tissue regeneration.
    Bharadwaz A; Jayasuriya AC
    Mater Sci Eng C Mater Biol Appl; 2020 May; 110():110698. PubMed ID: 32204012
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Biopolymer-based biomaterials as scaffolds for tissue engineering.
    Velema J; Kaplan D
    Adv Biochem Eng Biotechnol; 2006; 102():187-238. PubMed ID: 17089791
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Genetically Engineered Elastin-based Biomaterials for Biomedical Applications.
    Santos M; Serrano-Dúcar S; González-Valdivieso J; Vallejo R; Girotti A; Cuadrado P; Arias FJ
    Curr Med Chem; 2019; 26(40):7117-7146. PubMed ID: 29737250
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Tunable biomaterials from synthetic, sequence-controlled polymers.
    Austin MJ; Rosales AM
    Biomater Sci; 2019 Jan; 7(2):490-505. PubMed ID: 30628589
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A State-of-the-Art of Functional Scaffolds for 3D Nervous Tissue Regeneration.
    Tupone MG; d'Angelo M; Castelli V; Catanesi M; Benedetti E; Cimini A
    Front Bioeng Biotechnol; 2021; 9():639765. PubMed ID: 33816451
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Strategies and applications for incorporating physical and chemical signal gradients in tissue engineering.
    Singh M; Berkland C; Detamore MS
    Tissue Eng Part B Rev; 2008 Dec; 14(4):341-66. PubMed ID: 18803499
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Multifunctional biomaterials from the sea: Assessing the effects of chitosan incorporation into collagen scaffolds on mechanical and biological functionality.
    Raftery RM; Woods B; Marques ALP; Moreira-Silva J; Silva TH; Cryan SA; Reis RL; O'Brien FJ
    Acta Biomater; 2016 Oct; 43():160-169. PubMed ID: 27402181
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Biomaterial functionalization with triple-helical peptides for tissue engineering.
    Malcor JD; Mallein-Gerin F
    Acta Biomater; 2022 Aug; 148():1-21. PubMed ID: 35675889
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Converging functionality: Strategies for 3D hybrid-construct biofabrication and the role of composite biomaterials for skeletal regeneration.
    Alcala-Orozco CR; Cui X; Hooper GJ; Lim KS; Woodfield TBF
    Acta Biomater; 2021 Sep; 132():188-216. PubMed ID: 33713862
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Self-assembled supramolecular polymers with tailorable properties that enhance cell attachment and proliferation.
    Cheng CC; Lee DJ; Chen JK
    Acta Biomater; 2017 Mar; 50():476-483. PubMed ID: 28003144
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Stem Cell-Friendly Scaffold Biomaterials: Applications for Bone Tissue Engineering and Regenerative Medicine.
    Zhang Y; Wu D; Zhao X; Pakvasa M; Tucker AB; Luo H; Qin KH; Hu DA; Wang EJ; Li AJ; Zhang M; Mao Y; Sabharwal M; He F; Niu C; Wang H; Huang L; Shi D; Liu Q; Ni N; Fu K; Chen C; Wagstaff W; Reid RR; Athiviraham A; Ho S; Lee MJ; Hynes K; Strelzow J; He TC; El Dafrawy M
    Front Bioeng Biotechnol; 2020; 8():598607. PubMed ID: 33381499
    [TBL] [Abstract][Full Text] [Related]  

  • 18. New trends in the development of multifunctional peptides to functionalize biomaterials.
    Oliver-Cervelló L; Martin-Gómez H; Mas-Moruno C
    J Pept Sci; 2022 Jan; 28(1):e3335. PubMed ID: 34031952
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The Use of Fibers in Bone Tissue Engineering.
    Petre DG; Leeuwenburgh SCG
    Tissue Eng Part B Rev; 2022 Feb; 28(1):141-159. PubMed ID: 33375900
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Smart Porous Multi-Stimulus Polysaccharide-Based Biomaterials for Tissue Engineering.
    Alvarado-Hidalgo F; Ramírez-Sánchez K; Starbird-Perez R
    Molecules; 2020 Nov; 25(22):. PubMed ID: 33202707
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 22.