These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

155 related articles for article (PubMed ID: 22059595)

  • 1. Influence of cell surface structures on crenarchaeal biofilm formation using a thermostable green fluorescent protein.
    Henche AL; Koerdt A; Ghosh A; Albers SV
    Environ Microbiol; 2012 Mar; 14(3):779-93. PubMed ID: 22059595
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Biofilm formation by Pseudomonas aeruginosa wild type, flagella and type IV pili mutants.
    Klausen M; Heydorn A; Ragas P; Lambertsen L; Aaes-Jørgensen A; Molin S; Tolker-Nielsen T
    Mol Microbiol; 2003 Jun; 48(6):1511-24. PubMed ID: 12791135
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Diversity, assembly and regulation of archaeal type IV pili-like and non-type-IV pili-like surface structures.
    Lassak K; Ghosh A; Albers SV
    Res Microbiol; 2012; 163(9-10):630-44. PubMed ID: 23146836
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Roles of type IV pili, flagellum-mediated motility and extracellular DNA in the formation of mature multicellular structures in Pseudomonas aeruginosa biofilms.
    Barken KB; Pamp SJ; Yang L; Gjermansen M; Bertrand JJ; Klausen M; Givskov M; Whitchurch CB; Engel JN; Tolker-Nielsen T
    Environ Microbiol; 2008 Sep; 10(9):2331-43. PubMed ID: 18485000
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Dynamics and control of biofilms of the oligotrophic bacterium Caulobacter crescentus.
    Entcheva-Dimitrov P; Spormann AM
    J Bacteriol; 2004 Dec; 186(24):8254-66. PubMed ID: 15576774
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Versatile cell surface structures of archaea.
    Chaudhury P; Quax TEF; Albers SV
    Mol Microbiol; 2018 Feb; 107(3):298-311. PubMed ID: 29194812
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Type 4 pili are dispensable for biofilm development in the cyanobacterium Synechococcus elongatus.
    Nagar E; Zilberman S; Sendersky E; Simkovsky R; Shimoni E; Gershtein D; Herzberg M; Golden SS; Schwarz R
    Environ Microbiol; 2017 Jul; 19(7):2862-2872. PubMed ID: 28585390
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Tad Pili Play a Dynamic Role in Caulobacter crescentus Surface Colonization.
    Sangermani M; Hug I; Sauter N; Pfohl T; Jenal U
    mBio; 2019 Jun; 10(3):. PubMed ID: 31213565
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Physics of bacterial near-surface motility using flagella and type IV pili: implications for biofilm formation.
    Conrad JC
    Res Microbiol; 2012; 163(9-10):619-29. PubMed ID: 23103335
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Crenarchaeal biofilm formation under extreme conditions.
    Koerdt A; Gödeke J; Berger J; Thormann KM; Albers SV
    PLoS One; 2010 Nov; 5(11):e14104. PubMed ID: 21124788
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Electron microscopic observations of prokaryotic surface appendages.
    Kim KW
    J Microbiol; 2017 Dec; 55(12):919-926. PubMed ID: 29214488
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Cell surface attachment structures contribute to biofilm formation and xylem colonization by Erwinia amylovora.
    Koczan JM; Lenneman BR; McGrath MJ; Sundin GW
    Appl Environ Microbiol; 2011 Oct; 77(19):7031-9. PubMed ID: 21821744
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The Ctp type IVb pilus locus of Agrobacterium tumefaciens directs formation of the common pili and contributes to reversible surface attachment.
    Wang Y; Haitjema CH; Fuqua C
    J Bacteriol; 2014 Aug; 196(16):2979-88. PubMed ID: 24914181
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Archaeal type IV pili and their involvement in biofilm formation.
    Pohlschroder M; Esquivel RN
    Front Microbiol; 2015; 6():190. PubMed ID: 25852657
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Flagellar and twitching motility are necessary for Pseudomonas aeruginosa biofilm development.
    O'Toole GA; Kolter R
    Mol Microbiol; 1998 Oct; 30(2):295-304. PubMed ID: 9791175
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Genetic analysis of Escherichia coli biofilm formation: roles of flagella, motility, chemotaxis and type I pili.
    Pratt LA; Kolter R
    Mol Microbiol; 1998 Oct; 30(2):285-93. PubMed ID: 9791174
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Significance of a Posttranslational Modification of the PilA Protein of Geobacter sulfurreducens for Surface Attachment, Biofilm Formation, and Growth on Insoluble Extracellular Electron Acceptors.
    Richter LV; Franks AE; Weis RM; Sandler SJ
    J Bacteriol; 2017 Apr; 199(8):. PubMed ID: 28138101
    [No Abstract]   [Full Text] [Related]  

  • 18. Development and maturation of Escherichia coli K-12 biofilms.
    Reisner A; Haagensen JA; Schembri MA; Zechner EL; Molin S
    Mol Microbiol; 2003 May; 48(4):933-46. PubMed ID: 12753187
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Analysis of the role of the LH92_11085 gene of a biofilm hyper-producing Acinetobacter baumannii strain on biofilm formation and attachment to eukaryotic cells.
    Álvarez-Fraga L; Pérez A; Rumbo-Feal S; Merino M; Vallejo JA; Ohneck EJ; Edelmann RE; Beceiro A; Vázquez-Ucha JC; Valle J; Actis LA; Bou G; Poza M
    Virulence; 2016 May; 7(4):443-55. PubMed ID: 26854744
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Species-Specific Recognition of
    van Wolferen M; Shajahan A; Heinrich K; Brenzinger S; Black IM; Wagner A; Briegel A; Azadi P; Albers SV
    mBio; 2020 Mar; 11(2):. PubMed ID: 32156822
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.