BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

261 related articles for article (PubMed ID: 22059624)

  • 1. Coordination-driven inversion of handedness in ligand-modified PNA.
    Bezer S; Rapireddy S; Skorik YA; Ly DH; Achim C
    Inorg Chem; 2011 Dec; 50(23):11929-37. PubMed ID: 22059624
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Influence of metal coordination on the mismatch tolerance of ligand-modified PNA duplexes.
    Watson RM; Skorik YA; Patra GK; Achim C
    J Am Chem Soc; 2005 Oct; 127(42):14628-39. PubMed ID: 16231915
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Control of helical handedness in DNA and PNA nanostructures.
    Corradini R; Tedeschi T; Sforza S; Green MM; Marchelli R
    Methods Mol Biol; 2011; 749():79-92. PubMed ID: 21674366
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Metal binding to ligand-containing peptide nucleic acids.
    Ma Z; Olechnowicz F; Skorik YA; Achim C
    Inorg Chem; 2011 Jul; 50(13):6083-92. PubMed ID: 21634382
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Metal Coordination to Ligand-Modified Peptide Nucleic Acid Triplexes.
    Jayarathna DR; Stout HD; Achim C
    Inorg Chem; 2018 Jun; 57(12):6865-6872. PubMed ID: 29845860
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Lysine-based peptide nucleic acids (PNAs) with strong chiral constraint: control of helix handedness and DNA binding by chirality.
    Tedeschi T; Sforza S; Dossena A; Corradini R; Marchelli R
    Chirality; 2005; 17 Suppl():S196-204. PubMed ID: 15952136
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The Disobeying 'Soldier': Use of an Achiral Group to Modulate Chiral Induction in PNA Duplexes.
    Sargun A; Fang Y; Achim C
    Chimia (Aarau); 2018 Jun; 72(6):368-374. PubMed ID: 29941070
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Crystal structure of a partly self-complementary peptide nucleic acid (PNA) oligomer showing a duplex-triplex network.
    Petersson B; Nielsen BB; Rasmussen H; Larsen IK; Gajhede M; Nielsen PE; Kastrup JS
    J Am Chem Soc; 2005 Feb; 127(5):1424-30. PubMed ID: 15686374
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Metal binding to bipyridine-modified PNA.
    Franzini RM; Watson RM; Patra GK; Breece RM; Tierney DL; Hendrich MP; Achim C
    Inorg Chem; 2006 Nov; 45(24):9798-811. PubMed ID: 17112277
    [TBL] [Abstract][Full Text] [Related]  

  • 10. DNA-like double helix formed by peptide nucleic acid.
    Wittung P; Nielsen PE; Buchardt O; Egholm M; Nordén B
    Nature; 1994 Apr; 368(6471):561-3. PubMed ID: 8139692
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The crystal structure of non-modified and bipyridine-modified PNA duplexes.
    Yeh JI; Pohl E; Truan D; He W; Sheldrick GM; Du S; Achim C
    Chemistry; 2010 Oct; 16(39):11867-75. PubMed ID: 20859960
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Metal incorporation in modified PNA duplexes.
    Popescu DL; Parolin TJ; Achim C
    J Am Chem Soc; 2003 May; 125(21):6354-5. PubMed ID: 12785760
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Cu(II) cross-linked antiparallel dipeptide duplexes using heterofunctional ligand-substituted aminoethylglycine.
    Coppock MB; Kapelewski MT; Youm HW; Levine LA; Miller JR; Myers CP; Williams ME
    Inorg Chem; 2010 Jun; 49(11):5126-33. PubMed ID: 20462256
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Structural Studies on Porphyrin-PNA Conjugates in Parallel PNA:PNA Duplexes: Effect of Stacking Interactions on Helicity.
    Accetta A; Petrovic AG; Marchelli R; Berova N; Corradini R
    Chirality; 2015 Dec; 27(12):864-74. PubMed ID: 26412743
    [TBL] [Abstract][Full Text] [Related]  

  • 15. β-PNA: peptide nucleic acid (PNA) with a chiral center at the β-position of the PNA backbone.
    Sugiyama T; Imamura Y; Demizu Y; Kurihara M; Takano M; Kittaka A
    Bioorg Med Chem Lett; 2011 Dec; 21(24):7317-20. PubMed ID: 22050888
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Affinity and selectivity of C2- and C5-substituted "chiral-box" PNA in solution and on microarrays.
    Manicardi A; Calabretta A; Bencivenni M; Tedeschi T; Sforza S; Corradini R; Marchelli R
    Chirality; 2010; 22 Suppl 1():E161-72. PubMed ID: 21038387
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Duplex formation and secondary structure of γ-PNA observed by NMR and CD.
    Viéville JM; Barluenga S; Winssinger N; Delsuc MA
    Biophys Chem; 2016 Mar; 210():9-13. PubMed ID: 26493008
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Stabilization factors affecting duplex formation of peptide nucleic acid with DNA.
    Sugimoto N; Satoh N; Yasuda K; Nakano S
    Biochemistry; 2001 Jul; 40(29):8444-51. PubMed ID: 11456481
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A simple gamma-backbone modification preorganizes peptide nucleic acid into a helical structure.
    Dragulescu-Andrasi A; Rapireddy S; Frezza BM; Gayathri C; Gil RR; Ly DH
    J Am Chem Soc; 2006 Aug; 128(31):10258-67. PubMed ID: 16881656
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Synthesis, spectroscopic properties, and photoinduced CO-release studies of functionalized ruthenium(II) polypyridyl complexes: versatile building blocks for development of CORM-peptide nucleic acid bioconjugates.
    Bischof C; Joshi T; Dimri A; Spiccia L; Schatzschneider U
    Inorg Chem; 2013 Aug; 52(16):9297-308. PubMed ID: 23919761
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.