These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

169 related articles for article (PubMed ID: 22059645)

  • 1. Mass-dependent bond vibrational dynamics influence catalysis by HIV-1 protease.
    Kipp DR; Silva RG; Schramm VL
    J Am Chem Soc; 2011 Dec; 133(48):19358-61. PubMed ID: 22059645
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Role of conformational fluctuations in the enzymatic reaction of HIV-1 protease.
    Piana S; Carloni P; Parrinello M
    J Mol Biol; 2002 May; 319(2):567-83. PubMed ID: 12051929
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Femtosecond dynamics coupled to chemical barrier crossing in a Born-Oppenheimer enzyme.
    Silva RG; Murkin AS; Schramm VL
    Proc Natl Acad Sci U S A; 2011 Nov; 108(46):18661-5. PubMed ID: 22065757
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Dynamic flaps in HIV-1 protease adopt unique ordering at different stages in the catalytic cycle.
    Karthik S; Senapati S
    Proteins; 2011 Jun; 79(6):1830-40. PubMed ID: 21465560
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Joint neutron/molecular dynamics vibrational spectroscopy reveals softening of HIV-1 protease upon binding of a tight inhibitor.
    Kneller DW; Gerlits O; Daemen LL; Pavlova A; Gumbart JC; Cheng Y; Kovalevsky A
    Phys Chem Chem Phys; 2022 Feb; 24(6):3586-3597. PubMed ID: 35089990
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Protein promiscuity: drug resistance and native functions--HIV-1 case.
    Fernández A; Tawfik DS; Berkhout B; Sanders R; Kloczkowski A; Sen T; Jernigan B
    J Biomol Struct Dyn; 2005 Jun; 22(6):615-24. PubMed ID: 15842167
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Ionization state of the catalytic dyad Asp25/25' in the HIV-1 protease: NMR studies of site-specifically 13C labelled HIV-1 protease prepared by total chemical synthesis.
    Torbeev VY; Kent SB
    Org Biomol Chem; 2012 Aug; 10(30):5887-91. PubMed ID: 22659831
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Fluorogenic Assay for Inhibitors of HIV-1 Protease with Sub-picomolar Affinity.
    Windsor IW; Raines RT
    Sci Rep; 2015 Aug; 5():11286. PubMed ID: 26261098
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Kinetic characterization of the critical step in HIV-1 protease maturation.
    Sadiq SK; Noé F; De Fabritiis G
    Proc Natl Acad Sci U S A; 2012 Dec; 109(50):20449-54. PubMed ID: 23184967
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Enzymatic transition states and dynamic motion in barrier crossing.
    Schwartz SD; Schramm VL
    Nat Chem Biol; 2009 Aug; 5(8):551-8. PubMed ID: 19620996
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Catalytic water co-existing with a product peptide in the active site of HIV-1 protease revealed by X-ray structure analysis.
    Prashar V; Bihani S; Das A; Ferrer JL; Hosur M
    PLoS One; 2009 Nov; 4(11):e7860. PubMed ID: 19924250
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The role of hydrogen bonding in the enzymatic reaction catalyzed by HIV-1 protease.
    Trylska J; Grochowski P; McCammon JA
    Protein Sci; 2004 Feb; 13(2):513-28. PubMed ID: 14739332
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Characterization of two hydrophobic methyl clusters in HIV-1 protease by NMR spin relaxation in solution.
    Ishima R; Louis JM; Torchia DA
    J Mol Biol; 2001 Jan; 305(3):515-21. PubMed ID: 11152609
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Interdependence of Inhibitor Recognition in HIV-1 Protease.
    Paulsen JL; Leidner F; Ragland DA; Kurt Yilmaz N; Schiffer CA
    J Chem Theory Comput; 2017 May; 13(5):2300-2309. PubMed ID: 28358514
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Conformational stability and catalytic activity of HIV-1 protease are both enhanced at high salt concentration.
    Szeltner Z; Polgár L
    J Biol Chem; 1996 Mar; 271(10):5458-63. PubMed ID: 8621402
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Crystal structure of HIV-1 protease in situ product complex and observation of a low-barrier hydrogen bond between catalytic aspartates.
    Das A; Prashar V; Mahale S; Serre L; Ferrer JL; Hosur MV
    Proc Natl Acad Sci U S A; 2006 Dec; 103(49):18464-9. PubMed ID: 17116869
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Inverse enzyme isotope effects in human purine nucleoside phosphorylase with heavy asparagine labels.
    Harijan RK; Zoi I; Antoniou D; Schwartz SD; Schramm VL
    Proc Natl Acad Sci U S A; 2018 Jul; 115(27):E6209-E6216. PubMed ID: 29915028
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Transition states of native and drug-resistant HIV-1 protease are the same.
    Kipp DR; Hirschi JS; Wakata A; Goldstein H; Schramm VL
    Proc Natl Acad Sci U S A; 2012 Apr; 109(17):6543-8. PubMed ID: 22493227
    [TBL] [Abstract][Full Text] [Related]  

  • 19. How Mutations Can Resist Drug Binding yet Keep HIV-1 Protease Functional.
    Appadurai R; Senapati S
    Biochemistry; 2017 Jun; 56(23):2907-2920. PubMed ID: 28505418
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Isotope-specific and amino acid-specific heavy atom substitutions alter barrier crossing in human purine nucleoside phosphorylase.
    Suarez J; Schramm VL
    Proc Natl Acad Sci U S A; 2015 Sep; 112(36):11247-51. PubMed ID: 26305965
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.