These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

298 related articles for article (PubMed ID: 22059678)

  • 1. Super-resolution microscopy reveals cell wall dynamics and peptidoglycan architecture in ovococcal bacteria.
    Wheeler R; Mesnage S; Boneca IG; Hobbs JK; Foster SJ
    Mol Microbiol; 2011 Dec; 82(5):1096-109. PubMed ID: 22059678
    [TBL] [Abstract][Full Text] [Related]  

  • 2. DivIVA controls the dynamics of septum splitting and cell elongation in
    Trouve J; Zapun A; Bellard L; Juillot D; Pelletier A; Freton C; Baudoin M; Carballido-Lopez R; Campo N; Wong Y-S; Grangeasse C; Morlot C
    mBio; 2024 Oct; 15(10):e0131124. PubMed ID: 39287436
    [TBL] [Abstract][Full Text] [Related]  

  • 3. MreB: pilot or passenger of cell wall synthesis?
    White CL; Gober JW
    Trends Microbiol; 2012 Feb; 20(2):74-9. PubMed ID: 22154164
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Imaging Bacterial Cell Wall Biosynthesis.
    Radkov AD; Hsu YP; Booher G; VanNieuwenhze MS
    Annu Rev Biochem; 2018 Jun; 87():991-1014. PubMed ID: 29596002
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Cell wall elongation mode in Gram-negative bacteria is determined by peptidoglycan architecture.
    Turner RD; Hurd AF; Cadby A; Hobbs JK; Foster SJ
    Nat Commun; 2013; 4():1496. PubMed ID: 23422664
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Correlative Super-Resolution Optical and Atomic Force Microscopy Reveals Relationships Between Bacterial Cell Wall Architecture and Synthesis in
    Tank RKG; Lund VA; Kumar S; Turner RD; Lafage L; Pasquina Lemonche L; Bullough PA; Cadby A; Foster SJ; Hobbs JK
    ACS Nano; 2021 Oct; 15(10):16011-16018. PubMed ID: 34533301
    [TBL] [Abstract][Full Text] [Related]  

  • 7. In vitro high-resolution structural dynamics of single germinating bacterial spores.
    Plomp M; Leighton TJ; Wheeler KE; Hill HD; Malkin AJ
    Proc Natl Acad Sci U S A; 2007 Jun; 104(23):9644-9. PubMed ID: 17535925
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Imaging the nanoscale organization of peptidoglycan in living Lactococcus lactis cells.
    Andre G; Kulakauskas S; Chapot-Chartier MP; Navet B; Deghorain M; Bernard E; Hols P; Dufrêne YF
    Nat Commun; 2010 Jun; 1(3):27. PubMed ID: 20975688
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Processive movement of MreB-associated cell wall biosynthetic complexes in bacteria.
    Domínguez-Escobar J; Chastanet A; Crevenna AH; Fromion V; Wedlich-Söldner R; Carballido-López R
    Science; 2011 Jul; 333(6039):225-8. PubMed ID: 21636744
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Towards a comprehensive view of the bacterial cell wall.
    Dmitriev B; Toukach F; Ehlers S
    Trends Microbiol; 2005 Dec; 13(12):569-74. PubMed ID: 16236518
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Nanosurgery: observation of peptidoglycan strands in Lactobacillus helveticus cell walls.
    Firtel M; Henderson G; Sokolov I
    Ultramicroscopy; 2004 Nov; 101(2-4):105-9. PubMed ID: 15450655
    [TBL] [Abstract][Full Text] [Related]  

  • 12. DivIVA Interacts with the Cell Wall Hydrolase MltG To Regulate Peptidoglycan Synthesis in Streptococcus suis.
    Jiang Q; Li B; Zhang L; Li T; Hu Q; Li H; Zou W; Hu Z; Huang Q; Zhou R
    Microbiol Spectr; 2023 Jun; 11(3):e0475022. PubMed ID: 37212666
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Vancomycin dimer formation between analogues of bacterial peptidoglycan surfaces probed by force spectroscopy.
    Batchelor M; Zhou D; Cooper MA; Abell C; Rayment T
    Org Biomol Chem; 2010 Mar; 8(5):1142-8. PubMed ID: 20165806
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Elastic, flexible peptidoglycan and bacterial cell wall properties.
    Doyle RJ; Marquis RE
    Trends Microbiol; 1994 Feb; 2(2):57-60. PubMed ID: 8162443
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Maintaining network security: how macromolecular structures cross the peptidoglycan layer.
    Scheurwater EM; Burrows LL
    FEMS Microbiol Lett; 2011 May; 318(1):1-9. PubMed ID: 21276045
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A new morphogenesis pathway in bacteria: unbalanced activity of cell wall synthesis machineries leads to coccus-to-rod transition and filamentation in ovococci.
    Pérez-Núñez D; Briandet R; David B; Gautier C; Renault P; Hallet B; Hols P; Carballido-López R; Guédon E
    Mol Microbiol; 2011 Feb; 79(3):759-71. PubMed ID: 21255117
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Atomic force microscopy: probing the spatial organization, interactions and elasticity of microbial cell envelopes at molecular resolution.
    Scheuring S; Dufrêne YF
    Mol Microbiol; 2010 Mar; 75(6):1327-36. PubMed ID: 20132452
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Cell biology. Expanding functionality within the looking-glass universe.
    Blanke SR
    Science; 2009 Sep; 325(5947):1505-6. PubMed ID: 19762631
    [No Abstract]   [Full Text] [Related]  

  • 19. Peptidoglycan turnover and recycling in Gram-positive bacteria.
    Reith J; Mayer C
    Appl Microbiol Biotechnol; 2011 Oct; 92(1):1-11. PubMed ID: 21796380
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Multiparametric AFM reveals turgor-responsive net-like peptidoglycan architecture in live streptococci.
    Dover RS; Bitler A; Shimoni E; Trieu-Cuot P; Shai Y
    Nat Commun; 2015 May; 6():7193. PubMed ID: 26018339
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.