These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
254 related articles for article (PubMed ID: 22059869)
1. Confocal laser scanning microscopy, optical coherence tomography and transonychial water loss for in vivo investigation of nails. Sattler E; Kaestle R; Rothmund G; Welzel J Br J Dermatol; 2012 Apr; 166(4):740-6. PubMed ID: 22059869 [TBL] [Abstract][Full Text] [Related]
2. Nail thickness measurements using optical coherence tomography and 20-MHz ultrasonography. Mogensen M; Thomsen JB; Skovgaard LT; Jemec GB Br J Dermatol; 2007 Nov; 157(5):894-900. PubMed ID: 17714567 [TBL] [Abstract][Full Text] [Related]
3. A few aspects of transonychial water loss (TOWL): inter-individual, and intra-individual inter-finger, inter-hand and inter-day variabilities, and the influence of nail plate hydration, filing and varnish. Murdan S; Hinsu D; Guimier M Eur J Pharm Biopharm; 2008 Oct; 70(2):684-9. PubMed ID: 18582566 [TBL] [Abstract][Full Text] [Related]
4. Transonychial water loss: relation to sex, age and nail-plate thickness. Jemec GB; Agner T; Serup J Br J Dermatol; 1989 Oct; 121(4):443-6. PubMed ID: 2624837 [TBL] [Abstract][Full Text] [Related]
5. Transepidermal water loss (TEWL) and transonychial water loss (TOWL) measurements in healthy nail apparatus. Szymoniak-Lipska M; Dańczak-Pazdrowska A; Lipski A; Korecka K; Żaba R; Polańska A Skin Res Technol; 2024 Jul; 30(7):e13851. PubMed ID: 39031521 [TBL] [Abstract][Full Text] [Related]
6. Confocal laser scanning microscopy and optical coherence tomography for the evaluation of the kinetics and quantification of wound healing after fractional laser therapy. Sattler EC; Poloczek K; Kästle R; Welzel J J Am Acad Dermatol; 2013 Oct; 69(4):e165-73. PubMed ID: 23790496 [TBL] [Abstract][Full Text] [Related]
7. Measuring the effects of topical moisturizers on changes in stratum corneum thickness, water gradients and hydration in vivo. Crowther JM; Sieg A; Blenkiron P; Marcott C; Matts PJ; Kaczvinsky JR; Rawlings AV Br J Dermatol; 2008 Sep; 159(3):567-77. PubMed ID: 18616783 [TBL] [Abstract][Full Text] [Related]
8. Transonychial water loss in healthy and diseased nails. Krönauer C; Gfesser M; Ring J; Abeck D Acta Derm Venereol; 2001; 81(3):175-7. PubMed ID: 11558871 [TBL] [Abstract][Full Text] [Related]
9. Retinal imaging by laser polarimetry and optical coherence tomography evidence of axonal degeneration in multiple sclerosis. Zaveri MS; Conger A; Salter A; Frohman TC; Galetta SL; Markowitz CE; Jacobs DA; Cutter GR; Ying GS; Maguire MG; Calabresi PA; Balcer LJ; Frohman EM Arch Neurol; 2008 Jul; 65(7):924-8. PubMed ID: 18625859 [TBL] [Abstract][Full Text] [Related]
10. Confocal laser scanning microscopy as a new valuable tool in the diagnosis of onychomycosis - comparison of six diagnostic methods. Rothmund G; Sattler EC; Kaestle R; Fischer C; Haas CJ; Starz H; Welzel J Mycoses; 2013 Jan; 56(1):47-55. PubMed ID: 22524550 [TBL] [Abstract][Full Text] [Related]
11. Line-field confocal optical coherence tomography, a novel non-invasive tool for the diagnosis of onychomycosis. Eijkenboom QL; Daxenberger F; Gust C; Hartmann D; Guertler A; Steckmeier S; Deussing M; French LE; Welzel J; Schuh S; Sattler EC J Dtsch Dermatol Ges; 2024 Mar; 22(3):367-375. PubMed ID: 38279541 [TBL] [Abstract][Full Text] [Related]
12. In vivo transungual iontophoresis: effect of DC current application on ionic transport and on transonychial water loss. Dutet J; Delgado-Charro MB J Control Release; 2009 Dec; 140(2):117-25. PubMed ID: 19709638 [TBL] [Abstract][Full Text] [Related]
14. Validation of swept-source optical coherence tomography (SS-OCT) for the diagnosis of occlusal caries. Shimada Y; Sadr A; Burrow MF; Tagami J; Ozawa N; Sumi Y J Dent; 2010 Aug; 38(8):655-65. PubMed ID: 20470855 [TBL] [Abstract][Full Text] [Related]
15. High-Frequency Ultrasonography and Evaporimetry in Non-invasive Evaluation of the Nail Unit. Szymoniak-Lipska M; Polańska A; Jenerowicz D; Lipski A; Żaba R; Adamski Z; Dańczak-Pazdrowska A Front Med (Lausanne); 2021; 8():686470. PubMed ID: 34195212 [No Abstract] [Full Text] [Related]
16. Evaluation of the epidermal refractive index measured by optical coherence tomography. Sand M; Gambichler T; Moussa G; Bechara FG; Sand D; Altmeyer P; Hoffmann K Skin Res Technol; 2006 May; 12(2):114-8. PubMed ID: 16626385 [TBL] [Abstract][Full Text] [Related]
17. Comparison between confocal scanning laser tomography, scanning laser polarimetry and optical coherence tomography on the ability to detect localised retinal nerve fibre layer defects in glaucoma patients. Windisch BK; Harasymowycz PJ; See JL; Chauhan BC; Belliveau AC; Hutchison DM; Nicolela MT Br J Ophthalmol; 2009 Feb; 93(2):225-30. PubMed ID: 18765430 [TBL] [Abstract][Full Text] [Related]
18. A comparative pilot study on ultraviolet-induced skin changes assessed by noninvasive imaging techniques in vivo. Gambichler T; Huyn J; Tomi NS; Moussa G; Moll C; Sommer A; Altmeyer P; Hoffmann K Photochem Photobiol; 2006; 82(4):1103-7. PubMed ID: 16555922 [TBL] [Abstract][Full Text] [Related]
19. In vivo analysis of stromal integration of multilayer amniotic membrane transplantation in corneal ulcers. Nubile M; Dua HS; Lanzini M; Ciancaglini M; Calienno R; Said DG; Pocobelli A; Mastropasqua R; Carpineto P Am J Ophthalmol; 2011 May; 151(5):809-822.e1. PubMed ID: 21310388 [TBL] [Abstract][Full Text] [Related]
20. Optical coherence tomography and confocal scanning laser tomography for assessment of macular edema. Degenring RF; Aschmoneit I; Kamppeter B; Budde WM; Jonas JB Am J Ophthalmol; 2004 Sep; 138(3):354-61. PubMed ID: 15364216 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]