These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

224 related articles for article (PubMed ID: 22060322)

  • 1. Instability of a uniformly collapsing cloud of classical and quantum self-gravitating Brownian particles.
    Chavanis PH
    Phys Rev E Stat Nonlin Soft Matter Phys; 2011 Sep; 84(3 Pt 1):031101. PubMed ID: 22060322
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Self-gravitating Brownian systems and bacterial populations with two or more types of particles.
    Sopik J; Sire C; Chavanis PH
    Phys Rev E Stat Nonlin Soft Matter Phys; 2005 Aug; 72(2 Pt 2):026105. PubMed ID: 16196642
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Anomalous diffusion and collapse of self-gravitating Langevin particles in D dimensions.
    Chavanis PH; Sire C
    Phys Rev E Stat Nonlin Soft Matter Phys; 2004 Jan; 69(1 Pt 2):016116. PubMed ID: 14995676
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Thermodynamics and collapse of self-gravitating Brownian particles in D dimensions.
    Sire C; Chavanis PH
    Phys Rev E Stat Nonlin Soft Matter Phys; 2002 Oct; 66(4 Pt 2):046133. PubMed ID: 12443285
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Dynamics of the Bose-Einstein condensation: analogy with the collapse dynamics of a classical self-gravitating Brownian gas.
    Sopik J; Sire C; Chavanis PH
    Phys Rev E Stat Nonlin Soft Matter Phys; 2006 Jul; 74(1 Pt 1):011112. PubMed ID: 16907065
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Postcollapse dynamics of self-gravitating Brownian particles and bacterial populations.
    Sire C; Chavanis PH
    Phys Rev E Stat Nonlin Soft Matter Phys; 2004 Jun; 69(6 Pt 2):066109. PubMed ID: 15244669
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Virial theorem and dynamical evolution of self-gravitating Brownian particles in an unbounded domain. I. Overdamped models.
    Chavanis PH; Sire C
    Phys Rev E Stat Nonlin Soft Matter Phys; 2006 Jun; 73(6 Pt 2):066103. PubMed ID: 16906910
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Virial theorem and dynamical evolution of self-gravitating Brownian particles in an unbounded domain. II. Inertial models.
    Chavanis PH; Sire C
    Phys Rev E Stat Nonlin Soft Matter Phys; 2006 Jun; 73(6 Pt 2):066104. PubMed ID: 16906911
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Stability analysis of mean-field-type nonlinear Fokker-Planck equations associated with a generalized entropy and its application to the self-gravitating system.
    Shiino M
    Phys Rev E Stat Nonlin Soft Matter Phys; 2003 May; 67(5 Pt 2):056118. PubMed ID: 12786231
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Generalized quantum Fokker-Planck, diffusion, and Smoluchowski equations with true probability distribution functions.
    Banik SK; Bag BC; Ray DS
    Phys Rev E Stat Nonlin Soft Matter Phys; 2002 May; 65(5 Pt 1):051106. PubMed ID: 12059528
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Thermodynamics of self-gravitating systems.
    Chavanis PH; Rosier C; Sire C
    Phys Rev E Stat Nonlin Soft Matter Phys; 2002 Sep; 66(3 Pt 2A):036105. PubMed ID: 12366182
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Numerical solution of the nonlinear Schrödinger equation using smoothed-particle hydrodynamics.
    Mocz P; Succi S
    Phys Rev E Stat Nonlin Soft Matter Phys; 2015 May; 91(5):053304. PubMed ID: 26066276
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Colored-noise Fokker-Planck equation for the shear-induced self-diffusion process of non-Brownian particles.
    Lukassen LJ; Oberlack M
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 May; 89(5):052145. PubMed ID: 25353777
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Quantum tunneling at zero temperature in the strong friction regime.
    Bolivar AO
    Phys Rev Lett; 2005 Jan; 94(2):026807. PubMed ID: 15698213
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Exact analytical solution of the collapse of self-gravitating Brownian particles and bacterial populations at zero temperature.
    Chavanis PH; Sire C
    Phys Rev E Stat Nonlin Soft Matter Phys; 2011 Mar; 83(3 Pt 1):031131. PubMed ID: 21517478
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Nonlinear Dynamics of Spinning Bosonic Stars: Formation and Stability.
    Sanchis-Gual N; Di Giovanni F; Zilhão M; Herdeiro C; Cerdá-Durán P; Font JA; Radu E
    Phys Rev Lett; 2019 Nov; 123(22):221101. PubMed ID: 31868397
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Analysis of Self-Gravitating Fluid Instabilities from the Post-Newtonian Boltzmann Equation.
    Kremer GM
    Entropy (Basel); 2024 Mar; 26(3):. PubMed ID: 38539758
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Spontaneous formation and nonequilibrium dynamics of a soliton-shaped Bose-Einstein condensate in a trap.
    Berman OL; Kezerashvili RY; Kolmakov GV; Pomirchi LM
    Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Jun; 91(6):062901. PubMed ID: 26172766
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Random transitions described by the stochastic Smoluchowski-Poisson system and by the stochastic Keller-Segel model.
    Chavanis PH; Delfini L
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Mar; 89(3):032139. PubMed ID: 24730821
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Plasma suppression of large scale structure formation in the universe.
    Chen P; Lai KC
    Phys Rev Lett; 2007 Dec; 99(23):231302. PubMed ID: 18233355
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.