These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

171 related articles for article (PubMed ID: 22060345)

  • 1. Probability distribution of the time-averaged mean-square displacement of a Gaussian process.
    Grebenkov DS
    Phys Rev E Stat Nonlin Soft Matter Phys; 2011 Sep; 84(3 Pt 1):031124. PubMed ID: 22060345
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Optimal and suboptimal quadratic forms for noncentered Gaussian processes.
    Grebenkov DS
    Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Sep; 88(3):032140. PubMed ID: 24125246
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Time-averaged quadratic functionals of a Gaussian process.
    Grebenkov DS
    Phys Rev E Stat Nonlin Soft Matter Phys; 2011 Jun; 83(6 Pt 1):061117. PubMed ID: 21797312
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Brownian motion of a self-propelled particle.
    ten Hagen B; van Teeffelen S; Löwen H
    J Phys Condens Matter; 2011 May; 23(19):194119. PubMed ID: 21525563
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Scaled Brownian motion: a paradoxical process with a time dependent diffusivity for the description of anomalous diffusion.
    Jeon JH; Chechkin AV; Metzler R
    Phys Chem Chem Phys; 2014 Aug; 16(30):15811-7. PubMed ID: 24968336
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Fractional Brownian motion with random Hurst exponent: Accelerating diffusion and persistence transitions.
    Balcerek M; Burnecki K; Thapa S; Wyłomańska A; Chechkin A
    Chaos; 2022 Sep; 32(9):093114. PubMed ID: 36182362
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A universal model of restricted diffusion for fluorescence correlation spectroscopy.
    Piskorz TK; Ochab-Marcinek A
    J Phys Chem B; 2014 May; 118(18):4906-12. PubMed ID: 24738620
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Self-similar Gaussian processes for modeling anomalous diffusion.
    Lim SC; Muniandy SV
    Phys Rev E Stat Nonlin Soft Matter Phys; 2002 Aug; 66(2 Pt 1):021114. PubMed ID: 12241157
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Freezing transition and correlated motion in a quasi-two-dimensional colloid suspension.
    Zangi R; Rice SA
    Phys Rev E Stat Nonlin Soft Matter Phys; 2003 Dec; 68(6 Pt 1):061508. PubMed ID: 14754213
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Mean-square-displacement distribution in crystals and glasses: An analysis of the intrabasin dynamics.
    Flores-Ruiz HM; Naumis GG
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Apr; 85(4 Pt 1):041503. PubMed ID: 22680479
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Single particle tracking in systems showing anomalous diffusion: the role of weak ergodicity breaking.
    Burov S; Jeon JH; Metzler R; Barkai E
    Phys Chem Chem Phys; 2011 Feb; 13(5):1800-12. PubMed ID: 21203639
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Multiparticle collision dynamics simulations of viscoelastic fluids: shear-thinning Gaussian dumbbells.
    Kowalik B; Winkler RG
    J Chem Phys; 2013 Mar; 138(10):104903. PubMed ID: 23514515
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Diffusion in a Crowded, Rearranging Environment.
    Jain R; Sebastian KL
    J Phys Chem B; 2016 Apr; 120(16):3988-92. PubMed ID: 27029607
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Molecular motion in cell membranes: analytic study of fence-hindered random walks.
    Kenkre VM; Giuggioli L; Kalay Z
    Phys Rev E Stat Nonlin Soft Matter Phys; 2008 May; 77(5 Pt 1):051907. PubMed ID: 18643102
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Non-Gaussianity and dynamical trapping in locally activated random walks.
    Bénichou O; Meunier N; Redner S; Voituriez R
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Feb; 85(2 Pt 1):021137. PubMed ID: 22463182
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Superdiffusive trajectories in Brownian motion.
    Duplat J; Kheifets S; Li T; Raizen MG; Villermaux E
    Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Feb; 87(2):020105. PubMed ID: 23496441
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Anomalous yet Brownian.
    Wang B; Anthony SM; Bae SC; Granick S
    Proc Natl Acad Sci U S A; 2009 Sep; 106(36):15160-4. PubMed ID: 19666495
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Estimating the anomalous diffusion exponent for single particle tracking data with measurement errors - An alternative approach.
    Burnecki K; Kepten E; Garini Y; Sikora G; Weron A
    Sci Rep; 2015 Jun; 5():11306. PubMed ID: 26065707
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Optimal estimates of the diffusion coefficient of a single Brownian trajectory.
    Boyer D; Dean DS; Mejía-Monasterio C; Oshanin G
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Mar; 85(3 Pt 1):031136. PubMed ID: 22587067
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Inequivalence of time and ensemble averages in ergodic systems: exponential versus power-law relaxation in confinement.
    Jeon JH; Metzler R
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Feb; 85(2 Pt 1):021147. PubMed ID: 22463192
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.