These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

158 related articles for article (PubMed ID: 22060402)

  • 1. Effects of surface hydrophobicity on the conformational changes of polypeptides of different length.
    Mu Y
    Phys Rev E Stat Nonlin Soft Matter Phys; 2011 Sep; 84(3 Pt 1):031906. PubMed ID: 22060402
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Thermal stability of hydrophobic helical oligomers: a lattice simulation study in explicit water.
    Romero-Vargas Castrillón S; Matysiak S; Stillinger FH; Rossky PJ; Debenedetti PG
    J Phys Chem B; 2012 Aug; 116(33):9963-70. PubMed ID: 22877080
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effects of hydrophobic and dipole-dipole interactions on the conformational transitions of a model polypeptide.
    Mu Y; Gao YQ
    J Chem Phys; 2007 Sep; 127(10):105102. PubMed ID: 17867781
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effects of hydrophobic interaction strength on the self-assembled structures of model peptides.
    Mu Y; Yu M
    Soft Matter; 2014 Jul; 10(27):4956-65. PubMed ID: 24888420
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Role of backbone hydration and salt-bridge formation in stability of alpha-helix in solution.
    Ghosh T; Garde S; García AE
    Biophys J; 2003 Nov; 85(5):3187-93. PubMed ID: 14581218
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Length-dependent β-sheet growth mechanisms of polyalanine peptides in water and on hydrophobic surfaces.
    Mu Y; Tang B; Yu M
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Mar; 89(3):032711. PubMed ID: 24730878
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Solvent effects on the conformational transition of a model polyalanine peptide.
    Nguyen HD; Marchut AJ; Hall CK
    Protein Sci; 2004 Nov; 13(11):2909-24. PubMed ID: 15498937
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Prediction of polyelectrolyte polypeptide structures using Monte Carlo conformational search methods with implicit solvation modeling.
    Evans JS; Chan SI; Goddard WA
    Protein Sci; 1995 Oct; 4(10):2019-31. PubMed ID: 8535238
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Hydrophobic interactions in the formation of secondary structures in small peptides.
    Dias CL; Karttunen M; Chan HS
    Phys Rev E Stat Nonlin Soft Matter Phys; 2011 Oct; 84(4 Pt 1):041931. PubMed ID: 22181199
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effects of chain length on the aggregation of model polyglutamine peptides: molecular dynamics simulations.
    Marchut AJ; Hall CK
    Proteins; 2007 Jan; 66(1):96-109. PubMed ID: 17068817
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Communication: Conformation state diagram of polypeptides: a chain length induced α-β transition.
    Ricchiuto P; Brukhno AV; Paci E; Auer S
    J Chem Phys; 2011 Aug; 135(6):061101. PubMed ID: 21842917
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Non-arrhenius behavior in the unfolding of a short, hydrophobic alpha-helix. Complementarity of molecular dynamics and lattice model simulations.
    Collet O; Chipot C
    J Am Chem Soc; 2003 May; 125(21):6573-80. PubMed ID: 12785798
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The susceptibility of α-helical secondary structure to steric strain: Coarse-grained simulation of dendronized polypeptides.
    Browne W; Geissler PL
    J Chem Phys; 2010 Oct; 133(14):145102. PubMed ID: 20950049
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Atomic-level study of adsorption, conformational change, and dimerization of an α-helical peptide at graphene surface.
    Ou L; Luo Y; Wei G
    J Phys Chem B; 2011 Aug; 115(32):9813-22. PubMed ID: 21692466
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Interactions of hydrophobic peptides with lipid bilayers: Monte Carlo simulations with M2delta.
    Kessel A; Shental-Bechor D; Haliloglu T; Ben-Tal N
    Biophys J; 2003 Dec; 85(6):3431-44. PubMed ID: 14645040
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effect of preferred binding domains on peptide retention behavior in reversed-phase chromatography: amphipathic alpha-helices.
    Zhou NE; Mant CT; Hodges RS
    Pept Res; 1990; 3(1):8-20. PubMed ID: 2134049
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Mechanism for the alpha-helix to beta-hairpin transition.
    Ding F; Borreguero JM; Buldyrey SV; Stanley HE; Dokholyan NV
    Proteins; 2003 Nov; 53(2):220-8. PubMed ID: 14517973
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Modeling the alpha-helix to beta-hairpin transition mechanism and the formation of oligomeric aggregates of the fibrillogenic peptide Abeta(12-28): insights from all-atom molecular dynamics simulations.
    Simona F; Tiana G; Broglia RA; Colombo G
    J Mol Graph Model; 2004 Dec; 23(3):263-73. PubMed ID: 15530822
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Model peptides mimic the structure and function of the N-terminus of the pore-forming toxin sticholysin II.
    Casallanovo F; de Oliveira FJ; de Souza FC; Ros U; Martínez Y; Pentón D; Tejuca M; Martínez D; Pazos F; Pertinhez TA; Spisni A; Cilli EM; Lanio ME; Alvarez C; Schreier S
    Biopolymers; 2006; 84(2):169-80. PubMed ID: 16170802
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Beta-hairpin formation in aqueous solution and in the presence of trifluoroethanol: a (1)H and (13)C nuclear magnetic resonance conformational study of designed peptides.
    Santiveri CM; Pantoja-Uceda D; Rico M; Jiménez MA
    Biopolymers; 2005 Oct; 79(3):150-62. PubMed ID: 16078190
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.