These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

134 related articles for article (PubMed ID: 22060433)

  • 1. Generalized interacting self-avoiding trails on the square lattice: phase diagram and critical behavior.
    Foster DP
    Phys Rev E Stat Nonlin Soft Matter Phys; 2011 Sep; 84(3 Pt 1):032102. PubMed ID: 22060433
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Weighting of topologically different interactions in a model of two-dimensional polymer collapse.
    Bedini A; Owczarek AL; Prellberg T
    Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Jan; 87(1):012142. PubMed ID: 23410318
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Nature of the collapse transition in interacting self-avoiding trails.
    Oliveira TJ; Stilck JF
    Phys Rev E; 2016 Jan; 93(1):012502. PubMed ID: 26871113
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Identification of a polymer growth process with an equilibrium multicritical collapse phase transition: the meeting point of swollen, collapsed, and crystalline polymers.
    Doukas J; Owczarek AL; Prellberg T
    Phys Rev E Stat Nonlin Soft Matter Phys; 2010 Sep; 82(3 Pt 1):031103. PubMed ID: 21230021
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Adsorption of interacting self-avoiding trails in two dimensions.
    Rodrigues NT; Prellberg T; Owczarek AL
    Phys Rev E; 2019 Aug; 100(2-1):022121. PubMed ID: 31574768
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Anomalous critical behavior in the polymer collapse transition of three-dimensional lattice trails.
    Bedini A; Owczarek AL; Prellberg T
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Jul; 86(1 Pt 1):011123. PubMed ID: 23005384
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Grand-canonical solution of semiflexible self-avoiding trails on the Bethe lattice.
    Dantas WG; Oliveira TJ; Stilck JF; Prellberg T
    Phys Rev E; 2017 Feb; 95(2-1):022132. PubMed ID: 28297950
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Polymer models with competing collapse interactions on Husimi and Bethe lattices.
    Pretti M
    Phys Rev E; 2016 Mar; 93(3):032110. PubMed ID: 27078295
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Solution of a model of self-avoiding walks with multiple monomers per site on the Bethe lattice.
    Serra P; Stilck JF
    Phys Rev E Stat Nonlin Soft Matter Phys; 2007 Jan; 75(1 Pt 1):011130. PubMed ID: 17358133
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Use of the Complex Zeros of the Partition Function to Investigate the Critical Behavior of the Generalized Interacting Self-Avoiding Trail Model.
    Foster D; Kenna R; Pinettes C
    Entropy (Basel); 2019 Feb; 21(2):. PubMed ID: 33266869
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Critical points of the O(n) loop model on the martini and the 3-12 lattices.
    Ding C; Fu Z; Guo W
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Jun; 85(6 Pt 1):062101. PubMed ID: 23005148
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Grand-canonical and canonical solution of self-avoiding walks with up to three monomers per site on the Bethe lattice.
    Oliveira TJ; Stilck JF; Serra P
    Phys Rev E Stat Nonlin Soft Matter Phys; 2009 Oct; 80(4 Pt 1):041804. PubMed ID: 19905330
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Critical properties of a dilute O(n) model on the kagome lattice.
    Li B; Guo W; Blöte HW
    Phys Rev E Stat Nonlin Soft Matter Phys; 2008 Aug; 78(2 Pt 1):021128. PubMed ID: 18850807
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Solution of a model of self-avoiding walks with multiple monomers per site on the Husimi lattice.
    Oliveira TJ; Stilck JF; Serra P
    Phys Rev E Stat Nonlin Soft Matter Phys; 2008 Apr; 77(4 Pt 1):041103. PubMed ID: 18517574
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Ising-like transitions in the O(n) loop model on the square lattice.
    Fu Z; Guo W; Blöte HW
    Phys Rev E Stat Nonlin Soft Matter Phys; 2013 May; 87(5):052118. PubMed ID: 23767498
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Exactly solvable interacting spin-ice vertex model.
    Ferreira AA; Alcaraz FC
    Phys Rev E Stat Nonlin Soft Matter Phys; 2006 Jul; 74(1 Pt 1):011115. PubMed ID: 16907068
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Corner-transfer-matrix renormalization-group method for two-dimensional self-avoiding walks and other O(n) models.
    Foster DP; Pinettes C
    Phys Rev E Stat Nonlin Soft Matter Phys; 2003 Apr; 67(4 Pt 2):045105. PubMed ID: 12786421
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Completely packed O(n) loop models and their relation with exactly solved coloring models.
    Wang Y; Guo W; Blöte HW
    Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Mar; 91(3):032123. PubMed ID: 25871070
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Statistical mechanics of the two-dimensional hydrogen-bonding self-avoiding walk including solvent effects.
    Foster DP; Pinettes C
    Phys Rev E Stat Nonlin Soft Matter Phys; 2008 Feb; 77(2 Pt 1):021115. PubMed ID: 18351995
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Thermodynamic behavior of a polymer with interacting bonds on a square lattice.
    Machado KD; de Oliveira MJ; Stilck JF
    Phys Rev E Stat Nonlin Soft Matter Phys; 2001 Nov; 64(5 Pt 1):051810. PubMed ID: 11735961
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.