These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

267 related articles for article (PubMed ID: 22060476)

  • 1. Cluster synchrony in systems of coupled phase oscillators with higher-order coupling.
    Skardal PS; Ott E; Restrepo JG
    Phys Rev E Stat Nonlin Soft Matter Phys; 2011 Sep; 84(3 Pt 2):036208. PubMed ID: 22060476
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Hierarchical synchrony of phase oscillators in modular networks.
    Skardal PS; Restrepo JG
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Jan; 85(1 Pt 2):016208. PubMed ID: 22400644
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Nonuniversal transitions to synchrony in the Sakaguchi-Kuramoto model.
    Omel'chenko OE; Wolfrum M
    Phys Rev Lett; 2012 Oct; 109(16):164101. PubMed ID: 23215080
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Collective dynamics of identical phase oscillators with high-order coupling.
    Xu C; Xiang H; Gao J; Zheng Z
    Sci Rep; 2016 Aug; 6():31133. PubMed ID: 27491401
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Entrainment degree of globally coupled Winfree oscillators under external forcing.
    Zhang Y; Hoveijn I; Efstathiou K
    Chaos; 2022 Oct; 32(10):103121. PubMed ID: 36319288
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Encoding via conjugate symmetries of slow oscillations for globally coupled oscillators.
    Ashwin P; Borresen J
    Phys Rev E Stat Nonlin Soft Matter Phys; 2004 Aug; 70(2 Pt 2):026203. PubMed ID: 15447561
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Dynamics of Noisy Oscillator Populations beyond the Ott-Antonsen Ansatz.
    Tyulkina IV; Goldobin DS; Klimenko LS; Pikovsky A
    Phys Rev Lett; 2018 Jun; 120(26):264101. PubMed ID: 30004770
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Multiscale dynamics in communities of phase oscillators.
    Anderson D; Tenzer A; Barlev G; Girvan M; Antonsen TM; Ott E
    Chaos; 2012 Mar; 22(1):013102. PubMed ID: 22462978
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Exact finite-dimensional reduction for a population of noisy oscillators and its link to Ott-Antonsen and Watanabe-Strogatz theories.
    Cestnik R; Pikovsky A
    Chaos; 2022 Nov; 32(11):113126. PubMed ID: 36456354
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Phase oscillators in modular networks: The effect of nonlocal coupling.
    Ujjwal SR; Punetha N; Ramaswamy R
    Phys Rev E; 2016 Jan; 93(1):012207. PubMed ID: 26871073
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Interplay of coupling and common noise at the transition to synchrony in oscillator populations.
    Pimenova AV; Goldobin DS; Rosenblum M; Pikovsky A
    Sci Rep; 2016 Dec; 6():38518. PubMed ID: 27922105
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Low-dimensional description for ensembles of identical phase oscillators subject to Cauchy noise.
    Tönjes R; Pikovsky A
    Phys Rev E; 2020 Nov; 102(5-1):052315. PubMed ID: 33327137
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Ott-Antonsen attractiveness for parameter-dependent oscillatory systems.
    Pietras B; Daffertshofer A
    Chaos; 2016 Oct; 26(10):103101. PubMed ID: 27802676
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Solitary state at the edge of synchrony in ensembles with attractive and repulsive interactions.
    Maistrenko Y; Penkovsky B; Rosenblum M
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Jun; 89(6):060901. PubMed ID: 25019710
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The study of the dynamics of the order parameter of coupled oscillators in the Ott-Antonsen scheme for generic frequency distributions.
    Campa A
    Chaos; 2022 Aug; 32(8):083104. PubMed ID: 36049926
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Synchronization states and multistability in a ring of periodic oscillators: experimentally variable coupling delays.
    Williams CR; Sorrentino F; Murphy TE; Roy R
    Chaos; 2013 Dec; 23(4):043117. PubMed ID: 24387556
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Comment on "Long time evolution of phase oscillator systems" [Chaos 19, 023117 (2009)].
    Ott E; Hunt BR; Antonsen TM
    Chaos; 2011 Jun; 21(2):025112. PubMed ID: 21721790
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Slow switching in globally coupled oscillators: robustness and occurrence through delayed coupling.
    Kori H; Kuramoto Y
    Phys Rev E Stat Nonlin Soft Matter Phys; 2001 Apr; 63(4 Pt 2):046214. PubMed ID: 11308937
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Exact results for the Kuramoto model with a bimodal frequency distribution.
    Martens EA; Barreto E; Strogatz SH; Ott E; So P; Antonsen TM
    Phys Rev E Stat Nonlin Soft Matter Phys; 2009 Feb; 79(2 Pt 2):026204. PubMed ID: 19391817
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Noise-induced synchronization, desynchronization, and clustering in globally coupled nonidentical oscillators.
    Lai YM; Porter MA
    Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Jul; 88(1):012905. PubMed ID: 23944536
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.