These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
124 related articles for article (PubMed ID: 22060479)
1. Species mobility induces synchronization in chaotic population dynamics. Kouvaris N; Kugiumtzis D; Provata A Phys Rev E Stat Nonlin Soft Matter Phys; 2011 Sep; 84(3 Pt 2):036211. PubMed ID: 22060479 [TBL] [Abstract][Full Text] [Related]
2. Phase synchronization in unidirectionally coupled chaotic ratchets. Vincent UE; Njah AN; Akinlade O; Solarin AR Chaos; 2004 Dec; 14(4):1018-25. PubMed ID: 15568915 [TBL] [Abstract][Full Text] [Related]
3. Lattice effects observed in chaotic dynamics of experimental populations. Henson SM; Costantino RF; Cushing JM; Desharnais RA; Dennis B; King AA Science; 2001 Oct; 294(5542):602-5. PubMed ID: 11641500 [TBL] [Abstract][Full Text] [Related]
4. Self-emergence of chaos in the identification of irregular periodic behavior. De Feo O Chaos; 2003 Dec; 13(4):1205-15. PubMed ID: 14604411 [TBL] [Abstract][Full Text] [Related]
5. Dynamical inference: where phase synchronization and generalized synchronization meet. Stankovski T; McClintock PV; Stefanovska A Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Jun; 89(6):062909. PubMed ID: 25019853 [TBL] [Abstract][Full Text] [Related]
6. Onset of chaotic symbolic synchronization between population inversions in an array of weakly coupled Bose-Einstein condensates. Pando CL; Doedel EJ Phys Rev E Stat Nonlin Soft Matter Phys; 2005 May; 71(5 Pt 2):056201. PubMed ID: 16089628 [TBL] [Abstract][Full Text] [Related]
7. Individual-based chaos: extensions of the discrete logistic model. Gibson WT; Wilson WG J Theor Biol; 2013 Dec; 339():84-92. PubMed ID: 24036205 [TBL] [Abstract][Full Text] [Related]
8. [Nonlinear population dynamics: complication in the age structure influences transition-to-chaos scenarios]. Zhdanova OL; Frisman EIa Zh Obshch Biol; 2011; 72(3):214-28. PubMed ID: 21786663 [TBL] [Abstract][Full Text] [Related]
9. Fluctuations-induced coexistence in public goods dynamics. Behar H; Brenner N; Ariel G; Louzoun Y Phys Biol; 2016 Oct; 13(5):056006. PubMed ID: 27754974 [TBL] [Abstract][Full Text] [Related]
10. A new class of non-linear stochastic population models with mass conservation. Kooijman SA; Grasman J; Kooi BW Math Biosci; 2007 Dec; 210(2):378-94. PubMed ID: 17659307 [TBL] [Abstract][Full Text] [Related]
11. Globally coupled chaotic maps and demographic stochasticity. Kessler DA; Shnerb NM Phys Rev E Stat Nonlin Soft Matter Phys; 2010 Mar; 81(3 Pt 2):036111. PubMed ID: 20365819 [TBL] [Abstract][Full Text] [Related]
12. Influence of chaotic synchronization on mixing in the phase space of interacting systems. Astakhov SV; Dvorak A; Anishchenko VS Chaos; 2013 Mar; 23(1):013103. PubMed ID: 23556940 [TBL] [Abstract][Full Text] [Related]
13. Synchronization of stochastic oscillations due to long-range diffusion. Efimov A; Shabunin A; Provata A Phys Rev E Stat Nonlin Soft Matter Phys; 2008 Nov; 78(5 Pt 2):056201. PubMed ID: 19113194 [TBL] [Abstract][Full Text] [Related]
14. Stochastic cooperativity in non-linear dynamics of genetic regulatory networks. Rosenfeld S Math Biosci; 2007 Nov; 210(1):121-42. PubMed ID: 17617426 [TBL] [Abstract][Full Text] [Related]
15. Effects of demographic stochasticity on population persistence in advective media. Kolpas A; Nisbet RM Bull Math Biol; 2010 Jul; 72(5):1254-70. PubMed ID: 20135238 [TBL] [Abstract][Full Text] [Related]
16. Estimating model parameters by chaos synchronization. Tao C; Zhang Y; Du G; Jiang JJ Phys Rev E Stat Nonlin Soft Matter Phys; 2004 Mar; 69(3 Pt 2):036204. PubMed ID: 15089389 [TBL] [Abstract][Full Text] [Related]
17. Chaos and crises in a model for cooperative hunting: a symbolic dynamics approach. Duarte J; Januário C; Martins N; Sardanyés J Chaos; 2009 Dec; 19(4):043102. PubMed ID: 20059198 [TBL] [Abstract][Full Text] [Related]
18. Complex dynamics and phase synchronization in spatially extended ecological systems. Blasius B; Huppert A; Stone L Nature; 1999 May; 399(6734):354-9. PubMed ID: 10360572 [TBL] [Abstract][Full Text] [Related]
19. Deterministic and stochastic bifurcations in the Hindmarsh-Rose neuronal model. Dtchetgnia Djeundam SR; Yamapi R; Kofane TC; Aziz-Alaoui MA Chaos; 2013 Sep; 23(3):033125. PubMed ID: 24089961 [TBL] [Abstract][Full Text] [Related]
20. Population distribution and synchronized dynamics in a metapopulation model in two geographic scales. Manica V; Silva JA Math Biosci; 2014 Apr; 250():1-9. PubMed ID: 24530805 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]