These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
146 related articles for article (PubMed ID: 22060484)
1. Amplitude equations for reaction-diffusion systems with cross diffusion. Zemskov EP; Vanag VK; Epstein IR Phys Rev E Stat Nonlin Soft Matter Phys; 2011 Sep; 84(3 Pt 2):036216. PubMed ID: 22060484 [TBL] [Abstract][Full Text] [Related]
2. Turing pattern formation in fractional activator-inhibitor systems. Henry BI; Langlands TA; Wearne SL Phys Rev E Stat Nonlin Soft Matter Phys; 2005 Aug; 72(2 Pt 2):026101. PubMed ID: 16196638 [TBL] [Abstract][Full Text] [Related]
3. Effects of cross diffusion on Turing bifurcations in two-species reaction-transport systems. Kumar N; Horsthemke W Phys Rev E Stat Nonlin Soft Matter Phys; 2011 Mar; 83(3 Pt 2):036105. PubMed ID: 21517556 [TBL] [Abstract][Full Text] [Related]
4. Turing pattern formation in the Brusselator system with nonlinear diffusion. Gambino G; Lombardo MC; Sammartino M; Sciacca V Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Oct; 88(4):042925. PubMed ID: 24229267 [TBL] [Abstract][Full Text] [Related]
5. Cross-diffusion in the two-variable Oregonator model. Berenstein I; Beta C Chaos; 2013 Sep; 23(3):033119. PubMed ID: 24089955 [TBL] [Abstract][Full Text] [Related]
6. Homoclinic snaking near a codimension-two Turing-Hopf bifurcation point in the Brusselator model. Tzou JC; Ma YP; Bayliss A; Matkowsky BJ; Volpert VA Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Feb; 87(2):022908. PubMed ID: 23496592 [TBL] [Abstract][Full Text] [Related]
7. Energetic and entropic cost due to overlapping of Turing-Hopf instabilities in the presence of cross diffusion. Kumar P; Gangopadhyay G Phys Rev E; 2020 Apr; 101(4-1):042204. PubMed ID: 32422772 [TBL] [Abstract][Full Text] [Related]
8. Turing-Hopf instabilities through a combination of diffusion, advection, and finite size effects. Galhotra S; Bhattacharjee JK; Agarwalla BK J Chem Phys; 2014 Jan; 140(2):024501. PubMed ID: 24437890 [TBL] [Abstract][Full Text] [Related]
9. Control of the Hopf-Turing transition by time-delayed global feedback in a reaction-diffusion system. Ghosh P Phys Rev E Stat Nonlin Soft Matter Phys; 2011 Jul; 84(1 Pt 2):016222. PubMed ID: 21867288 [TBL] [Abstract][Full Text] [Related]
10. Wave instability induced by nonlocal spatial coupling in a model of the light-sensitive Belousov-Zhabotinsky reaction. Nicola EM; Bär M; Engel H Phys Rev E Stat Nonlin Soft Matter Phys; 2006 Jun; 73(6 Pt 2):066225. PubMed ID: 16906964 [TBL] [Abstract][Full Text] [Related]
11. Widening the criteria for emergence of Turing patterns. Kuznetsov M; Polezhaev A Chaos; 2020 Mar; 30(3):033106. PubMed ID: 32237770 [TBL] [Abstract][Full Text] [Related]
12. Spatiotemporal chaos stimulated by transverse Hopf instabilities in an optical bilayer system. Paulau PV; Babushkin IV; Loiko NA Phys Rev E Stat Nonlin Soft Matter Phys; 2004 Oct; 70(4 Pt 2):046222. PubMed ID: 15600510 [TBL] [Abstract][Full Text] [Related]
13. Turing pattern dynamics in an activator-inhibitor system with superdiffusion. Zhang L; Tian C Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Dec; 90(6):062915. PubMed ID: 25615172 [TBL] [Abstract][Full Text] [Related]
14. Spatiotemporal dynamics near a supercritical Turing-Hopf bifurcation in a two-dimensional reaction-diffusion system. Just W; Bose M; Bose S; Engel H; Schöll E Phys Rev E Stat Nonlin Soft Matter Phys; 2001 Aug; 64(2 Pt 2):026219. PubMed ID: 11497689 [TBL] [Abstract][Full Text] [Related]
15. Turing instability in reaction-subdiffusion systems. Yadav A; Milu SM; Horsthemke W Phys Rev E Stat Nonlin Soft Matter Phys; 2008 Aug; 78(2 Pt 2):026116. PubMed ID: 18850906 [TBL] [Abstract][Full Text] [Related]
16. Stable squares and other oscillatory turing patterns in a reaction-diffusion model. Yang L; Zhabotinsky AM; Epstein IR Phys Rev Lett; 2004 May; 92(19):198303. PubMed ID: 15169455 [TBL] [Abstract][Full Text] [Related]
17. Time-delay-induced instabilities in reaction-diffusion systems. Sen S; Ghosh P; Riaz SS; Ray DS Phys Rev E Stat Nonlin Soft Matter Phys; 2009 Oct; 80(4 Pt 2):046212. PubMed ID: 19905420 [TBL] [Abstract][Full Text] [Related]
18. Chemical pattern formation induced by a shear flow in a two-layer model. Vasquez DA; Meyer J; Suedhoff H Phys Rev E Stat Nonlin Soft Matter Phys; 2008 Sep; 78(3 Pt 2):036109. PubMed ID: 18851107 [TBL] [Abstract][Full Text] [Related]
19. Pattern formation in an N+Q component reaction-diffusion system. Pearson JE; Bruno WJ Chaos; 1992 Oct; 2(4):513-524. PubMed ID: 12780000 [TBL] [Abstract][Full Text] [Related]
20. Principal bifurcations and symmetries in the emergence of reaction-diffusion-advection patterns on finite domains. Yochelis A; Sheintuch M Phys Rev E Stat Nonlin Soft Matter Phys; 2009 Nov; 80(5 Pt 2):056201. PubMed ID: 20365054 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]