These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

200 related articles for article (PubMed ID: 22060543)

  • 1. Comment on "Lattice Boltzmann method for simulations of liquid-vapor thermal flows".
    Huang H; Krafczyk M
    Phys Rev E Stat Nonlin Soft Matter Phys; 2011 Sep; 84(3 Pt 2):038701; discussion 038702. PubMed ID: 22060543
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Lattice Boltzmann modeling of multiphase flows at large density ratio with an improved pseudopotential model.
    Li Q; Luo KH; Li XJ
    Phys Rev E Stat Nonlin Soft Matter Phys; 2013 May; 87(5):053301. PubMed ID: 23767651
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Simulation of two-phase liquid-vapor flows using a high-order compact finite-difference lattice Boltzmann method.
    Hejranfar K; Ezzatneshan E
    Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Nov; 92(5):053305. PubMed ID: 26651814
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Lattice Boltzmann simulations of thermal flows beyond the Boussinesq and ideal-gas approximations.
    Huang R; Lan L; Li Q
    Phys Rev E; 2020 Oct; 102(4-1):043304. PubMed ID: 33212591
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Forcing term in single-phase and Shan-Chen-type multiphase lattice Boltzmann models.
    Huang H; Krafczyk M; Lu X
    Phys Rev E Stat Nonlin Soft Matter Phys; 2011 Oct; 84(4 Pt 2):046710. PubMed ID: 22181310
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effect of the forcing term in the pseudopotential lattice Boltzmann modeling of thermal flows.
    Li Q; Luo KH
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 May; 89(5):053022. PubMed ID: 25353895
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Numerical simulation of fluid flow and heat transfer inside a rotating disk-cylinder configuration by a lattice Boltzmann model.
    Chen S; Tölke J; Krafczyk M
    Phys Rev E Stat Nonlin Soft Matter Phys; 2009 Jul; 80(1 Pt 2):016702. PubMed ID: 19658833
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Comment on "Numerics of the lattice Boltzmann method: effects of collision models on the lattice Boltzmann simulations".
    Karlin IV; Succi S; Chikatamarla SS
    Phys Rev E Stat Nonlin Soft Matter Phys; 2011 Dec; 84(6 Pt 2):068701. PubMed ID: 22304222
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Coupling lattice Boltzmann model for simulation of thermal flows on standard lattices.
    Li Q; Luo KH; He YL; Gao YJ; Tao WQ
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Jan; 85(1 Pt 2):016710. PubMed ID: 22400704
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Consistent lattice Boltzmann equations for phase transitions.
    Siebert DN; Philippi PC; Mattila KK
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Nov; 90(5-1):053310. PubMed ID: 25493907
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Improved thermal lattice Boltzmann model for simulation of liquid-vapor phase change.
    Li Q; Zhou P; Yan HJ
    Phys Rev E; 2017 Dec; 96(6-1):063303. PubMed ID: 29347407
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Multipseudopotential interaction: A consistent study of cubic equations of state in lattice Boltzmann models.
    Khajepor S; Chen B
    Phys Rev E; 2016 Jan; 93(1):013303. PubMed ID: 26871187
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Simple lattice Boltzmann subgrid-scale model for convectional flows with high Rayleigh numbers within an enclosed circular annular cavity.
    Chen S; Tölke J; Krafczyk M
    Phys Rev E Stat Nonlin Soft Matter Phys; 2009 Aug; 80(2 Pt 2):026702. PubMed ID: 19792276
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Phase-field-based lattice Boltzmann finite-difference model for simulating thermocapillary flows.
    Liu H; Valocchi AJ; Zhang Y; Kang Q
    Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Jan; 87(1):013010. PubMed ID: 23410429
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Meshless lattice Boltzmann method for the simulation of fluid flows.
    Musavi SH; Ashrafizaadeh M
    Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Feb; 91(2):023310. PubMed ID: 25768638
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Lattice Boltzmann method for simulations of liquid-vapor thermal flows.
    Zhang R; Chen H
    Phys Rev E Stat Nonlin Soft Matter Phys; 2003 Jun; 67(6 Pt 2):066711. PubMed ID: 16241384
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Extended lattice Boltzmann method for numerical simulation of thermal phase change in two-phase fluid flow.
    Safari H; Rahimian MH; Krafczyk M
    Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Jul; 88(1):013304. PubMed ID: 23944580
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Multiphase lattice Boltzmann method for particle suspensions.
    Joshi AS; Sun Y
    Phys Rev E Stat Nonlin Soft Matter Phys; 2009 Jun; 79(6 Pt 2):066703. PubMed ID: 19658621
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Axisymmetric multiphase lattice Boltzmann method.
    Srivastava S; Perlekar P; Boonkkamp JH; Verma N; Toschi F
    Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Jul; 88(1):013309. PubMed ID: 23944585
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Lattice Boltzmann equation linear stability analysis: thermal and athermal models.
    Siebert DN; Hegele LA; Philippi PC
    Phys Rev E Stat Nonlin Soft Matter Phys; 2008 Feb; 77(2 Pt 2):026707. PubMed ID: 18352148
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.