These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

105 related articles for article (PubMed ID: 22060853)

  • 1. Electromagnetic scanning to estimate carcass lean content of Taiwan native broilers.
    Lin RS; Chen LR; Huang SC; Liu CY
    Meat Sci; 2002 Jul; 61(3):295-300. PubMed ID: 22060853
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Electromagnetic scanning of pork carcasses in an on-line industrial configuration.
    Berg EP; Forrest JC; Fisher JE
    J Anim Sci; 1994 Oct; 72(10):2642-52. PubMed ID: 7883623
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Electromagnetic scanning to predict lamb carcass composition.
    Berg EP; Forrest JC; Thomas DL; Nusbaum N; Kauffman RG
    J Anim Sci; 1994 Jul; 72(7):1728-36. PubMed ID: 7928752
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Prediction of swine carcass composition by total body electrical conductivity (TOBEC).
    Higbie AD; Bidner TD; Matthews JO; Southern LL; Page TG; Persica MA; Sanders MB; Monlezun CJ
    J Anim Sci; 2002 Jan; 80(1):113-22. PubMed ID: 11831507
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Total body electrical conductivity (TOBEC) measurement of compositional differences in hams, loins, and bellies from conjugated linoleic acid (CLA)-fed stress-genotype pigs.
    Swan JE; Parrish FC; Wiegand BR; Larsen ST; Baas TJ; Berg EP
    J Anim Sci; 2001 Jun; 79(6):1475-82. PubMed ID: 11424684
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Electromagnetic scanning of beef quarters to predict carcass and primal lean content.
    Gwartney BL; Calkins CR; Lin RS; Forrest JC; Parkhurst AM; Lemenager RP
    J Anim Sci; 1994 Nov; 72(11):2836-42. PubMed ID: 7730176
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Evaluation of electronic technology to assess lamb carcass composition.
    Berg EP; Neary MK; Forrest JC; Thomas DL; Kauffman RG
    J Anim Sci; 1997 Sep; 75(9):2433-44. PubMed ID: 9303462
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Prediction of lean and fat composition in swine carcasses from ham area measurements with image analysis.
    Jia J; Schinckel AP; Forrest JC; Chen W; Wagner JR
    Meat Sci; 2010 Jun; 85(2):240-4. PubMed ID: 20374892
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Composition analysis of pork carcasses by dual-energy x-ray absorptiometry.
    Mitchell AD; Scholz AM; Pursel VG; Evock-Clover CM
    J Anim Sci; 1998 Aug; 76(8):2104-14. PubMed ID: 9734860
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Predicting pork carcass and primal lean content from electromagnetic scans.
    Berg EP; Asfaw A; Ellersieck MR
    Meat Sci; 2002 Feb; 60(2):133-9. PubMed ID: 22063236
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Estimation of Canadian and European lean yields and composition of pig carcasses by dual-energy X-ray absorptiometry.
    Marcoux M; Bernier JF; Pomar C
    Meat Sci; 2003 Mar; 63(3):359-65. PubMed ID: 22062389
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Genotype and treatment biases in estimation of carcass lean of swine.
    Gu Y; Schinckel AP; Martin TG; Forrest JC; Kuei CH; Watkins LE
    J Anim Sci; 1992 Jun; 70(6):1708-18. PubMed ID: 1634395
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Pork carcass composition derived from a neural network model of electromagnetic scans.
    Berg EP; Engel BA; Forrest JC
    J Anim Sci; 1998 Jan; 76(1):18-22. PubMed ID: 9464879
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A new method for estimation of body composition in the live rat.
    Bracco EF; Yang MU; Segal K; Hashim SA; Van Itallie TB
    Proc Soc Exp Biol Med; 1983 Nov; 174(2):143-6. PubMed ID: 6634707
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The use of dual-energy X-ray absorptiometry to estimate the dissected composition of lamb carcasses.
    Mercier J; Pomar C; Marcoux M; Goulet F; Thériault M; Castonguay FW
    Meat Sci; 2006 Jun; 73(2):249-57. PubMed ID: 22062296
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The accuracy of predicting carcass composition of three different pig genetic lines by dual-energy X-ray absorptiometry.
    Marcoux M; Faucitano L; Pomar C
    Meat Sci; 2005 Aug; 70(4):655-63. PubMed ID: 22063893
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Dual X-ray absorptiometry accurately predicts carcass composition from live sheep and chemical composition of live and dead sheep.
    Pearce KL; Ferguson M; Gardner G; Smith N; Greef J; Pethick DW
    Meat Sci; 2009 Jan; 81(1):285-93. PubMed ID: 22063997
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Using current on-line carcass evaluation parameters to estimate boneless and bone-in pork carcass yield as influenced by trim level.
    Berg EP; Grams DW; Miller RK; Wise JW; Forrest JC; Savell JW
    J Anim Sci; 1999 Aug; 77(8):1977-84. PubMed ID: 10461971
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Growth, development, and carcass composition in five genotypes of swine.
    Gu Y; Schinckel AP; Martin TG
    J Anim Sci; 1992 Jun; 70(6):1719-29. PubMed ID: 1634396
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Evaluation of the non invasive TOBEC (total body electrical conductivity) procedure for prediction of chemical components of male broilers with special consideration of dietary protein level.
    Dänicke S; Halle I; Jeroch H
    Arch Tierernahr; 1997; 50(2):137-53. PubMed ID: 9227806
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.