These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

128 related articles for article (PubMed ID: 22061159)

  • 21. Quantifying the impact of septic tank systems on eutrophication risk in rural headwaters.
    Withers PJ; Jarvie HP; Stoate C
    Environ Int; 2011 Apr; 37(3):644-53. PubMed ID: 21277632
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Recent trends in nutrient concentrations in Estonian rivers as a response to large-scale changes in land-use intensity and life-styles.
    Iital A; Pachel K; Loigu E; Pihlak M; Leisk U
    J Environ Monit; 2010 Jan; 12(1):178-88. PubMed ID: 20082012
    [TBL] [Abstract][Full Text] [Related]  

  • 23. High-frequency phosphorus monitoring of the River Kennet, UK: are ecological problems due to intermittent sewage treatment works failures?
    Bowes MJ; Palmer-Felgate EJ; Jarvie HP; Loewenthal M; Wickham HD; Harman SA; Carr E
    J Environ Monit; 2012 Dec; 14(12):3137-45. PubMed ID: 23104042
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Estimating catchment nutrient flow with the HBV-NP model: sensitivity to input data.
    Andersson L; Rosberg J; Pers BC; Olsson J; Arheimer B
    Ambio; 2005 Nov; 34(7):521-32. PubMed ID: 16435741
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Trends of phosphorus, nitrogen and chlorophyll a concentrations in Finnish rivers and lakes in 1975-2000.
    Räike A; Pietiläinen OP; Rekolainen S; Kauppila P; Pitkänen H; Niemi J; Raateland A; Vuorenmaa J
    Sci Total Environ; 2003 Jul; 310(1-3):47-59. PubMed ID: 12812730
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Impact of changes in nutrient inputs to the water quality of the shallow Haapsalu Bay, the Baltic Sea.
    Iital A; Brandt N; Gröndahl F; Loigu E; Klõga M
    J Environ Monit; 2010 Aug; 12(8):1531-6. PubMed ID: 20577689
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Change point analysis of phosphorus trends in the Illinois River (Oklahoma) demonstrates the effects of watershed management.
    Scott JT; Haggard BE; Sharpley AN; Romeis JJ
    J Environ Qual; 2011; 40(4):1249-56. PubMed ID: 21712594
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Predicting phosphorus concentrations in British rivers resulting from the introduction of improved phosphorus removal from sewage effluent.
    Bowes MJ; Neal C; Jarvie HP; Smith JT; Davies HN
    Sci Total Environ; 2010 Sep; 408(19):4239-50. PubMed ID: 20547413
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Effect of policy-induced measures on suspended sediments and total phosphorus concentrations from three Norwegian agricultural catchments.
    Bechmann M; Stålnacke P
    Sci Total Environ; 2005 May; 344(1-3):129-42. PubMed ID: 15907514
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Modelling of phosphorus inputs to rivers from diffuse and point sources.
    Bowes MJ; Smith JT; Jarvie HP; Neal C
    Sci Total Environ; 2008 Jun; 395(2-3):125-38. PubMed ID: 18367235
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Linking dissolved and particulate phosphorus export in rivers draining California's Central Valley with anthropogenic sources at the regional scale.
    Sobota DJ; Harrison JA; Dahlgren RA
    J Environ Qual; 2011; 40(4):1290-302. PubMed ID: 21712599
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Identification of phosphorus export from low-runoff yielding areas using combined application of high frequency water quality data and MODHMS modelling.
    Donn MJ; Barron OV; Barr AD
    Sci Total Environ; 2012 Jun; 426():264-71. PubMed ID: 22503672
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Within-river phosphorus retention: accounting for a missing piece in the watershed phosphorus puzzle.
    Jarvie HP; Sharpley AN; Scott JT; Haggard BE; Bowes MJ; Massey LB
    Environ Sci Technol; 2012 Dec; 46(24):13284-92. PubMed ID: 23106359
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Farmyard point discharges and their influence on nutrient and labile carbon dynamics in a second order stream draining through a dairy unit.
    Edwards AC; Hooda PS
    J Environ Manage; 2008 Jun; 87(4):591-9. PubMed ID: 18082927
    [TBL] [Abstract][Full Text] [Related]  

  • 35. The water quality of the River Thame in the Thames Basin of south/south-eastern England.
    Neal C; Neal M; Hill L; Wickham H
    Sci Total Environ; 2006 May; 360(1-3):254-71. PubMed ID: 16253309
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Impact of point-source pollution on phosphorus and nitrogen cycling in stream-bed sediments.
    Palmer-Felgate EJ; Mortimer RJ; Krom MD; Jarvie HP
    Environ Sci Technol; 2010 Feb; 44(3):908-14. PubMed ID: 20058857
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Phosphorus and sediment loss in a catchment with winter forage grazing of cropland by dairy cattle.
    McDowell RW
    J Environ Qual; 2006; 35(2):575-83. PubMed ID: 16510702
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Estimating the mitigation of anthropogenic loss of phosphorus in New Zealand grassland catchments.
    McDowell RW
    Sci Total Environ; 2014 Jan; 468-469():1178-86. PubMed ID: 23579204
    [TBL] [Abstract][Full Text] [Related]  

  • 39. The impact of agricultural management practices on nutrient losses to water: data on the effects of soil drainage characteristics.
    Kurz I; Tunney H; Coxon CE
    Water Sci Technol; 2005; 51(3-4):73-81. PubMed ID: 15850176
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Phosphorus load to surface water from bank erosion in a Danish lowland river basin.
    Kronvang B; Audet J; Baattrup-Pedersen A; Jensen HS; Larsen SE
    J Environ Qual; 2012; 41(2):304-13. PubMed ID: 22370392
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.