BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

220 related articles for article (PubMed ID: 22061267)

  • 1. Electrical performance of low cost cathodes prepared by plasma sputtering deposition in microbial fuel cells.
    Lefebvre O; Tang Z; Fung MP; Chua DH; Chang IS; Ng HY
    Biosens Bioelectron; 2012 Jan; 31(1):164-9. PubMed ID: 22061267
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Power densities using different cathode catalysts (Pt and CoTMPP) and polymer binders (nafion and PTFE) in single chamber microbial fuel cells.
    Cheng S; Liu H; Logan BE
    Environ Sci Technol; 2006 Jan; 40(1):364-9. PubMed ID: 16433373
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Optimization of a Pt-free cathode suitable for practical applications of microbial fuel cells.
    Lefebvre O; Ooi WK; Tang Z; Abdullah-Al-Mamun M; Chua DH; Ng HY
    Bioresour Technol; 2009 Oct; 100(20):4907-10. PubMed ID: 19464880
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Power generation using spinel manganese-cobalt oxide as a cathode catalyst for microbial fuel cell applications.
    Mahmoud M; Gad-Allah TA; El-Khatib KM; El-Gohary F
    Bioresour Technol; 2011 Nov; 102(22):10459-64. PubMed ID: 21944282
    [TBL] [Abstract][Full Text] [Related]  

  • 5. An insight into cathode options for microbial fuel cells.
    Lefebvre O; Al-Mamun A; Ooi WK; Tang Z; Chua DH; Ng HY
    Water Sci Technol; 2008; 57(12):2031-7. PubMed ID: 18587194
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Application of Co-naphthalocyanine (CoNPc) as alternative cathode catalyst and support structure for microbial fuel cells.
    Kim JR; Kim JY; Han SB; Park KW; Saratale GD; Oh SE
    Bioresour Technol; 2011 Jan; 102(1):342-7. PubMed ID: 20656480
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Manganese dioxide as an alternative cathodic catalyst to platinum in microbial fuel cells.
    Zhang L; Liu C; Zhuang L; Li W; Zhou S; Zhang J
    Biosens Bioelectron; 2009 May; 24(9):2825-9. PubMed ID: 19297145
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Development of high performance of Co/Fe/N/CNT nanocatalyst for oxygen reduction in microbial fuel cells.
    Deng L; Zhou M; Liu C; Liu L; Liu C; Dong S
    Talanta; 2010 Apr; 81(1-2):444-8. PubMed ID: 20188944
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Long-term performance of activated carbon air cathodes with different diffusion layer porosities in microbial fuel cells.
    Zhang F; Pant D; Logan BE
    Biosens Bioelectron; 2011 Dec; 30(1):49-55. PubMed ID: 21937216
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Power generation using adjustable Nafion/PTFE mixed binders in air-cathode microbial fuel cells.
    Wang X; Feng Y; Liu J; Shi X; Lee H; Li N; Ren N
    Biosens Bioelectron; 2010 Oct; 26(2):946-8. PubMed ID: 20634052
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Use of pyrolyzed iron ethylenediaminetetraacetic acid modified activated carbon as air-cathode catalyst in microbial fuel cells.
    Xia X; Zhang F; Zhang X; Liang P; Huang X; Logan BE
    ACS Appl Mater Interfaces; 2013 Aug; 5(16):7862-6. PubMed ID: 23902951
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effects of the Pt loading side and cathode-biofilm on the performance of a membrane-less and single-chamber microbial fuel cell.
    Yang S; Jia B; Liu H
    Bioresour Technol; 2009 Feb; 100(3):1197-202. PubMed ID: 18790635
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Air-cathode structure optimization in separator-coupled microbial fuel cells.
    Zhang X; Sun H; Liang P; Huang X; Chen X; Logan BE
    Biosens Bioelectron; 2011 Dec; 30(1):267-71. PubMed ID: 21996324
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Easy-to-operate and low-temperature synthesis of gram-scale nitrogen-doped graphene and its application as cathode catalyst in microbial fuel cells.
    Feng L; Chen Y; Chen L
    ACS Nano; 2011 Dec; 5(12):9611-8. PubMed ID: 22029637
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A novel stainless steel mesh/cobalt oxide hybrid electrode for efficient catalysis of oxygen reduction in a microbial fuel cell.
    Gong XB; You SJ; Wang XH; Zhang JN; Gan Y; Ren NQ
    Biosens Bioelectron; 2014 May; 55():237-41. PubMed ID: 24384266
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Performance and microbial ecology of air-cathode microbial fuel cells with layered electrode assemblies.
    Butler CS; Nerenberg R
    Appl Microbiol Biotechnol; 2010 May; 86(5):1399-408. PubMed ID: 20098985
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Power generation by packed-bed air-cathode microbial fuel cells.
    Zhang X; Shi J; Liang P; Wei J; Huang X; Zhang C; Logan BE
    Bioresour Technol; 2013 Aug; 142():109-14. PubMed ID: 23732924
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Evaluation of low-cost cathode catalysts for high yield biohydrogen production in microbial electrolysis cell.
    Wang L; Chen Y; Ye Y; Lu B; Zhu S; Shen S
    Water Sci Technol; 2011; 63(3):440-8. PubMed ID: 21278465
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Carbon nanotube supported MnO₂ catalysts for oxygen reduction reaction and their applications in microbial fuel cells.
    Lu M; Kharkwal S; Ng HY; Li SF
    Biosens Bioelectron; 2011 Aug; 26(12):4728-32. PubMed ID: 21676607
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mitigation of the effect of catholyte contamination in microbial fuel cells using a wicking air cathode.
    Sund CJ; Wong MS; Sumner JJ
    Biosens Bioelectron; 2009 Jun; 24(10):3144-7. PubMed ID: 19359159
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.