BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

132 related articles for article (PubMed ID: 22061622)

  • 21. Decarboxylation of L-dopa by cultured mouse astrocytes.
    Juorio AV; Li XM; Walz W; Paterson IA
    Brain Res; 1993 Oct; 626(1-2):306-9. PubMed ID: 8281440
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Species-specific distribution of aromatic L-amino acid decarboxylase in the rodent adrenal gland, cerebellum, and olfactory bulb.
    Baker H; Abate C; Szabo A; Joh TH
    J Comp Neurol; 1991 Mar; 305(1):119-29. PubMed ID: 2033120
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Thyroid Hormones and Derivatives: Endogenous Thyroid Hormones and Their Targets.
    Köhrle J
    Methods Mol Biol; 2018; 1801():85-104. PubMed ID: 29892819
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Identification of the aromatic L-amino acid decarboxylase gene expression in various mice tissues and its modulation by immobilization stress in stellate ganglia.
    Kubovcakova L; Krizanova O; Kvetnansky R
    Neuroscience; 2004; 126(2):375-80. PubMed ID: 15207355
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Determination of six thyroid hormones in the brain and thyroid gland using isotope-dilution liquid chromatography/tandem mass spectrometry.
    Kunisue T; Fisher JW; Kannan K
    Anal Chem; 2011 Jan; 83(1):417-24. PubMed ID: 21121614
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Adeno-associated virus-mediated gene transfer of human aromatic L-amino acid decarboxylase protects mixed striatal primary cultures from L-DOPA toxicity.
    Doroudchi MM; Liauw J; Heaton K; Zhen Z; Forsayeth JR
    J Neurochem; 2005 May; 93(3):634-40. PubMed ID: 15836622
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Cotransduction of tyrosine hydroxylase and aromatic L-amino acid decarboxylase genes into cultured striatal cells using adeno-associated virus vectors.
    Fan D; Kang D; Ogawa M; Nakano I; Nagatsu T; Kurtzman GJ; Ozawa K
    Chin Med J (Engl); 1998 Dec; 111(12):1111-3. PubMed ID: 11263376
    [TBL] [Abstract][Full Text] [Related]  

  • 28. L-3,4-dihydroxyphenylalanine-induced c-Fos expression in the CNS under inhibition of central aromatic L-amino acid decarboxylase.
    Shimamura M; Shimizu M; Yagami T; Funabashi T; Kimura F; Kuroiwa Y; Misu Y; Goshima Y
    Neuropharmacology; 2006 Jun; 50(8):909-16. PubMed ID: 16504219
    [TBL] [Abstract][Full Text] [Related]  

  • 29. The role of aromatic L-amino acid decarboxylase in bacillamide C biosynthesis by Bacillus atrophaeus C89.
    Yuwen L; Zhang FL; Chen QH; Lin SJ; Zhao YL; Li ZY
    Sci Rep; 2013; 3():1753. PubMed ID: 23628927
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Decarboxylation of L-dopa and 5-hydroxytryptophan in dispersed rat pancreas acinar cells.
    Yu EW; Stern L; Tenenhouse A
    Pharmacology; 1984; 29(4):185-92. PubMed ID: 6494232
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Aromatic Amino Acid Decarboxylase Deficiency: The Added Value of Biochemistry.
    Montioli R; Borri Voltattorni C
    Int J Mol Sci; 2021 Mar; 22(6):. PubMed ID: 33808712
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Aromatic l-amino acid decarboxylase expression profiling and isoform detection in the developing porcine brain.
    Blechingberg J; Holm IE; Johansen MG; Børglum AD; Nielsen AL
    Brain Res; 2010 Jan; 1308():1-13. PubMed ID: 19857468
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Urinary dopamine in aromatic L-amino acid decarboxylase deficiency: the unsolved paradox.
    Wassenberg T; Willemsen MA; Geurtz PB; Lammens M; Verrijp K; Wilmer M; Lee WT; Wevers RA; Verbeek MM
    Mol Genet Metab; 2010 Dec; 101(4):349-56. PubMed ID: 20832343
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Clinical Metabolomics to Segregate Aromatic Amino Acid Decarboxylase Deficiency From Drug-Induced Metabolite Elevations.
    Pappan KL; Kennedy AD; Magoulas PL; Hanchard NA; Sun Q; Elsea SH
    Pediatr Neurol; 2017 Oct; 75():66-72. PubMed ID: 28823629
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Phenotypic changes of AADC-only-immunoreactive cells in the alimentary canal of the laboratory shrew, Suncus murinus, induced by systemic administration of monoamine precursors.
    Sakai K; Nomura R; Hasegawa Y; Sinzato M; Nishii K; Katoh Y; Yamada K
    Okajimas Folia Anat Jpn; 2015; 92(2):43-7. PubMed ID: 26639565
    [TBL] [Abstract][Full Text] [Related]  

  • 36. A validated LC-MS/MS method for cellular thyroid hormone metabolism: Uptake and turnover of mono-iodinated thyroid hormone metabolites by PCCL3 thyrocytes.
    Richards KH; Schanze N; Monk R; Rijntjes E; Rathmann D; Köhrle J
    PLoS One; 2017; 12(8):e0183482. PubMed ID: 28837607
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Thyronamines are isozyme-specific substrates of deiodinases.
    Piehl S; Heberer T; Balizs G; Scanlan TS; Smits R; Koksch B; Köhrle J
    Endocrinology; 2008 Jun; 149(6):3037-45. PubMed ID: 18339710
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Localization of L-DOPA uptake and decarboxylating neuronal structures in the cat brain using dopamine immunohistochemistry.
    Kitahama K; Geffard M; Araneda S; Arai R; Ogawa K; Nagatsu I; Pequignot JM
    Brain Res; 2007 Sep; 1167():56-70. PubMed ID: 17692830
    [TBL] [Abstract][Full Text] [Related]  

  • 39. The ability of grafted human sympathetic neurons to synthesize and store dopamine: a potential mechanism for the clinical effect of sympathetic neuron autografts in patients with Parkinson's disease.
    Nakao N; Shintani-Mizushima A; Kakishita K; Itakura T
    Exp Neurol; 2004 Jul; 188(1):65-73. PubMed ID: 15191803
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Activities of aromatic L-amino acid decarboxylase with L-dopa as substrate in brush-border- and basolateral membranes and cytoplasm obtained from rat renal cortex.
    Yamazaki N; Sudo J
    Jpn J Pharmacol; 1988 Feb; 46(2):193-6. PubMed ID: 3379830
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.