These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

136 related articles for article (PubMed ID: 22062039)

  • 1. Investigations into the accuracy of prediction of beef carcass composition using subcutaneous fat thickness and carcass weight II. Improving the accuracy of prediction.
    Johnson ER; Priyanto R; Taylor DG
    Meat Sci; 1997 Jun; 46(2):159-72. PubMed ID: 22062039
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Investigations into the accuracy of prediction of beef carcass composition using subcutaneous fat thickness and carcass weight I. Identifying problems.
    Priyanto R; Johnson ER; Taylor DG
    Meat Sci; 1997 Jun; 46(2):147-57. PubMed ID: 22062038
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Use of linear measurements of m. longissimus to predict the muscle content of beef carcasses.
    Johnson ER; Baker DA
    Meat Sci; 1997 Mar; 45(3):321-7. PubMed ID: 22061470
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effectiveness of morphometric measurements for improvement of the prediction accuracy of beef carcass composition.
    Zembayashi M
    Meat Sci; 1999 Apr; 51(4):339-47. PubMed ID: 22062029
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The value of carcass weight, fat depth measures and eye muscle area for predicting the percentage yield of saleable meat in Australian grass-fed beef carcasses for Japan.
    Hopkins DL; Roberts AH
    Meat Sci; 1995; 41(2):137-45. PubMed ID: 22060164
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The estimation of beef carcass muscle using cross-sectional area of M. longissimus dorsi at the fifth rib.
    Johnson ER; Taylor DG; Priyanto R
    Meat Sci; 1995; 40(1):13-9. PubMed ID: 22059915
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Gluteus medius and rump fat depths as additional live animal ultrasound measurements for predicting retail product and trimmable fat in beef carcasses.
    Realini CE; Williams RE; Pringle TD; Bertrand JK
    J Anim Sci; 2001 Jun; 79(6):1378-85. PubMed ID: 11424672
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Application of bioelectrical impedance analysis in prediction of light kid carcass and muscle chemical composition.
    Silva SR; Afonso J; Monteiro A; Morais R; Cabo A; Batista AC; Guedes CM; Teixeira A
    Animal; 2018 Jun; 12(6):1324-1330. PubMed ID: 29039298
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Relative contributions of subcutaneous and intermuscular fat to yields and predictability of retail product, fat trim, and bone in beef carcasses.
    Dikeman ME; Cundiff LV; Gregory KE; Kemp KE; Koch RM
    J Anim Sci; 1998 Jun; 76(6):1604-12. PubMed ID: 9655580
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Influence of slaughter weight and sex on yield and quality grades of Hanwoo (Korean native cattle) carcasses.
    Park GB; Moon SS; Ko YD; Ha JK; Lee JG; Chang HH; Joo ST
    J Anim Sci; 2002 Jan; 80(1):129-36. PubMed ID: 11831510
    [TBL] [Abstract][Full Text] [Related]  

  • 11. In vivo estimation of goat carcass composition and body fat partition by real-time ultrasonography.
    Teixeira A; Joy M; Delfa R
    J Anim Sci; 2008 Sep; 86(9):2369-76. PubMed ID: 18469057
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Dual X-ray absorptiometry accurately predicts carcass composition from live sheep and chemical composition of live and dead sheep.
    Pearce KL; Ferguson M; Gardner G; Smith N; Greef J; Pethick DW
    Meat Sci; 2009 Jan; 81(1):285-93. PubMed ID: 22063997
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The chemical composition of carcasses can be predicted from proxy traits in finishing male beef cattle: A meta-analysis.
    Al-Jammas M; Agabriel J; Vernet J; Ortigues-Marty I
    Meat Sci; 2016 Sep; 119():174-84. PubMed ID: 27206053
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Carcass traits and retail display-life of chops from different goat breed types.
    Oman JS; Waldron DF; Griffin DB; Savell JW
    J Anim Sci; 2000 May; 78(5):1262-6. PubMed ID: 10834580
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Prediction of lean and fat composition in swine carcasses from ham area measurements with image analysis.
    Jia J; Schinckel AP; Forrest JC; Chen W; Wagner JR
    Meat Sci; 2010 Jun; 85(2):240-4. PubMed ID: 20374892
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Predicting carcass composition of beef cattle using ultrasound technology.
    Griffin DB; Savell JW; Recio HA; Garrett RP; Cross HR
    J Anim Sci; 1999 Apr; 77(4):889-92. PubMed ID: 10328353
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The prediction of percentage of fat in pork carcasses.
    Johnson LP; Miller MF; Haydon KD; Reagan JO
    J Anim Sci; 1990 Dec; 68(12):4185-92. PubMed ID: 2286560
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Use of electronic probes for classifying lamb carcasses.
    Kirton AH; Mercer GJ; Duganzich DM; Uljee AE
    Meat Sci; 1995; 39(2):167-76. PubMed ID: 22059823
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Evaluation of ultrasound for prediction of carcass fat thickness and longissimus muscle area in feedlot steers.
    Smith MT; Oltjen JW; Dolezal HG; Gill DR; Behrens BD
    J Anim Sci; 1992 Jan; 70(1):29-37. PubMed ID: 1582915
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Video image analysis as a potential grading system for Uruguayan beef carcasses.
    Vote DJ; Bowling MB; Cunha BC; Belk KE; Tatum JD; Montossi F; Smith GC
    J Anim Sci; 2009 Jul; 87(7):2376-90. PubMed ID: 19395512
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.