These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
101 related articles for article (PubMed ID: 22062045)
21. [Neuropathic pain and ATP receptors in spinal microglia]. Tsuda M; Inoue K Brain Nerve; 2007 Sep; 59(9):953-9. PubMed ID: 17886477 [TBL] [Abstract][Full Text] [Related]
22. p38/MAPK inhibitor modulates the expression of dorsal horn GABA(B) receptors in the spinal nerve ligation model of neuropathic pain. Wu J; Xu Y; Pu S; Jiang W; Du D Neuroimmunomodulation; 2011; 18(3):150-5. PubMed ID: 21242699 [TBL] [Abstract][Full Text] [Related]
23. Noradrenaline reduces the ATP-stimulated phosphorylation of p38 MAP kinase via beta-adrenergic receptors-cAMP-protein kinase A-dependent mechanism in cultured rat spinal microglia. Morioka N; Tanabe H; Inoue A; Dohi T; Nakata Y Neurochem Int; 2009 Sep; 55(4):226-34. PubMed ID: 19524113 [TBL] [Abstract][Full Text] [Related]
24. The role of glia and the immune system in the development and maintenance of neuropathic pain. Vallejo R; Tilley DM; Vogel L; Benyamin R Pain Pract; 2010; 10(3):167-84. PubMed ID: 20384965 [TBL] [Abstract][Full Text] [Related]
25. Differential roles of ERK, JNK and p38 MAPK in pain-related spatial and temporal enhancement of synaptic responses in the hippocampal formation of rats: multi-electrode array recordings. Liu MG; Wang RR; Chen XF; Zhang FK; Cui XY; Chen J Brain Res; 2011 Mar; 1382():57-69. PubMed ID: 21284942 [TBL] [Abstract][Full Text] [Related]
26. Spinal microglia initiate and maintain hyperalgesia in a rat model of chronic pancreatitis. Liu PY; Lu CL; Wang CC; Lee IH; Hsieh JC; Chen CC; Lee HF; Lin HC; Chang FY; Lee SD Gastroenterology; 2012 Jan; 142(1):165-173.e2. PubMed ID: 21963786 [TBL] [Abstract][Full Text] [Related]
27. 1-(2',4'-dichlorophenyl)-6-methyl-N-cyclohexylamine-1,4-dihydroindeno[1,2-c]pyrazole-3-carboxamide, a novel CB2 agonist, alleviates neuropathic pain through functional microglial changes in mice. Luongo L; Palazzo E; Tambaro S; Giordano C; Gatta L; Scafuro MA; Rossi FS; Lazzari P; Pani L; de Novellis V; Malcangio M; Maione S Neurobiol Dis; 2010 Jan; 37(1):177-85. PubMed ID: 19804829 [TBL] [Abstract][Full Text] [Related]
28. Phosphorylation of spinal N-methyl-d-aspartate receptor NR1 subunits by extracellular signal-regulated kinase in dorsal horn neurons and microglia contributes to diabetes-induced painful neuropathy. Daulhac L; Maffre V; Mallet C; Etienne M; Privat AM; Kowalski-Chauvel A; Seva C; Fialip J; Eschalier A Eur J Pain; 2011 Feb; 15(2):169.e1-169.e12. PubMed ID: 20594879 [TBL] [Abstract][Full Text] [Related]
29. Microglial Signaling in Chronic Pain with a Special Focus on Caspase 6, p38 MAP Kinase, and Sex Dependence. Berta T; Qadri YJ; Chen G; Ji RR J Dent Res; 2016 Sep; 95(10):1124-31. PubMed ID: 27307048 [TBL] [Abstract][Full Text] [Related]
30. Special issue on microglia and chronic pain. Hulsebosch CE Exp Neurol; 2012 Apr; 234(2):253-4. PubMed ID: 22285249 [TBL] [Abstract][Full Text] [Related]
31. mTOR kinase: a possible pharmacological target in the management of chronic pain. Lisi L; Aceto P; Navarra P; Dello Russo C Biomed Res Int; 2015; 2015():394257. PubMed ID: 25685786 [TBL] [Abstract][Full Text] [Related]
33. Spinal microglia-neuron interactions in chronic pain. Ho IHT; Chan MTV; Wu WKK; Liu X J Leukoc Biol; 2020 Nov; 108(5):1575-1592. PubMed ID: 32573822 [TBL] [Abstract][Full Text] [Related]
34. PI3K/Akt Pathway: A Potential Therapeutic Target for Chronic Pain. Chen SP; Zhou YQ; Liu DQ; Zhang W; Manyande A; Guan XH; Tian YK; Ye DW; Omar DM Curr Pharm Des; 2017; 23(12):1860-1868. PubMed ID: 28190392 [TBL] [Abstract][Full Text] [Related]
35. Unconventional Role of Caspase-6 in Spinal Microglia Activation and Chronic Pain. Berta T; Lee JE; Park CK Mediators Inflamm; 2017; 2017():9383184. PubMed ID: 28270702 [TBL] [Abstract][Full Text] [Related]
36. Identification of FAM173B as a protein methyltransferase promoting chronic pain. Willemen HLDM; Kavelaars A; Prado J; Maas M; Versteeg S; Nellissen LJJ; Tromp J; Gonzalez Cano R; Zhou W; Jakobsson ME; Małecki J; Posthuma G; Habib AM; Heijnen CJ; Falnes PØ; Eijkelkamp N PLoS Biol; 2018 Feb; 16(2):e2003452. PubMed ID: 29444090 [TBL] [Abstract][Full Text] [Related]
37. Do glial cells control pain? Suter MR; Wen YR; Decosterd I; Ji RR Neuron Glia Biol; 2007 Aug; 3(3):255-68. PubMed ID: 18504511 [TBL] [Abstract][Full Text] [Related]
38. Pharmacological Manipulation of Translation as a Therapeutic Target for Chronic Pain. Yousuf MS; Shiers SI; Sahn JJ; Price TJ Pharmacol Rev; 2021 Jan; 73(1):59-88. PubMed ID: 33203717 [TBL] [Abstract][Full Text] [Related]
39. New potential target for chronic pain identified. Chamberlain D Pain Manag; 2014 Jul; 4(4):255-6. PubMed ID: 25436257 [No Abstract] [Full Text] [Related]
40. The role of microglia in chronic pain and depression: innocent bystander or culprit? Yin N; Yan E; Duan W; Mao C; Fei Q; Yang C; Hu Y; Xu X Psychopharmacology (Berl); 2021 Apr; 238(4):949-958. PubMed ID: 33544194 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]