BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

126 related articles for article (PubMed ID: 22062296)

  • 1. The use of dual-energy X-ray absorptiometry to estimate the dissected composition of lamb carcasses.
    Mercier J; Pomar C; Marcoux M; Goulet F; Thériault M; Castonguay FW
    Meat Sci; 2006 Jun; 73(2):249-57. PubMed ID: 22062296
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The accuracy of predicting carcass composition of three different pig genetic lines by dual-energy X-ray absorptiometry.
    Marcoux M; Faucitano L; Pomar C
    Meat Sci; 2005 Aug; 70(4):655-63. PubMed ID: 22063893
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Estimation of Canadian and European lean yields and composition of pig carcasses by dual-energy X-ray absorptiometry.
    Marcoux M; Bernier JF; Pomar C
    Meat Sci; 2003 Mar; 63(3):359-65. PubMed ID: 22062389
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Dual X-ray absorptiometry accurately predicts carcass composition from live sheep and chemical composition of live and dead sheep.
    Pearce KL; Ferguson M; Gardner G; Smith N; Greef J; Pethick DW
    Meat Sci; 2009 Jan; 81(1):285-93. PubMed ID: 22063997
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Composition analysis of pork carcasses by dual-energy x-ray absorptiometry.
    Mitchell AD; Scholz AM; Pursel VG; Evock-Clover CM
    J Anim Sci; 1998 Aug; 76(8):2104-14. PubMed ID: 9734860
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Prediction of pork carcass composition based on cross-sectional region analysis of dual energy X-ray absorptiometry (DXA) scans.
    Mitchell AD; Scholz AM; Pursel VG
    Meat Sci; 2003 Feb; 63(2):265-71. PubMed ID: 22062187
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Rapid and non-destructive determination of lean fat and bone content in beef using dual energy X-ray absorptiometry.
    López-Campos Ó; Roberts JC; Larsen IL; Prieto N; Juárez M; Dugan MER; Aalhus JL
    Meat Sci; 2018 Dec; 146():140-146. PubMed ID: 30145410
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Prediction of lean and fat composition in swine carcasses from ham area measurements with image analysis.
    Jia J; Schinckel AP; Forrest JC; Chen W; Wagner JR
    Meat Sci; 2010 Jun; 85(2):240-4. PubMed ID: 20374892
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Assessing the accuracy of measurements obtained by dual-energy X-ray absorptiometry on pig carcasses and primal cuts.
    Kipper M; Marcoux M; Andretta I; Pomar C
    Meat Sci; 2019 Feb; 148():79-87. PubMed ID: 30340164
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Electromagnetic scanning of pork carcasses in an on-line industrial configuration.
    Berg EP; Forrest JC; Fisher JE
    J Anim Sci; 1994 Oct; 72(10):2642-52. PubMed ID: 7883623
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Accuracy of dual energy X-ray absorptiometry (DXA) in assessing carcass composition from different pig populations.
    Soladoye OP; López Campos Ó; Aalhus JL; Gariépy C; Shand P; Juárez M
    Meat Sci; 2016 Nov; 121():310-316. PubMed ID: 27395824
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Predicting beef carcass composition using tissue weights of a primal cut assessed by computed tomography.
    Navajas EA; Richardson RI; Fisher AV; Hyslop JJ; Ross DW; Prieto N; Simm G; Roehe R
    Animal; 2010 Nov; 4(11):1810-7. PubMed ID: 22445141
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Predicting the weight of lean meat in lamb carcasses and the suitability of this characteristic as a basis for valuing carcasses.
    Hopkins DL
    Meat Sci; 1994; 38(2):235-41. PubMed ID: 22059661
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Predicting tissue distribution and partitioning in terminal sire sheep using x-ray computed tomography.
    Macfarlane JM; Lewis RM; Emmans GC; Young MJ; Simm G
    J Anim Sci; 2009 Jan; 87(1):107-18. PubMed ID: 18641178
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Estimation of Carcass Tissue Composition from the Neck and Shoulder Composition in Growing Blackbelly Male Lambs.
    Gastelum-Delgado MA; Aguilar-Quiñonez JA; Arce-Recinos C; García-Herrera RA; Macías-Cruz U; Lee-Rangel HA; Cruz-Tamayo AA; Ángeles-Hernández JC; Vargas-Bello-Pérez E; Chay-Canul AJ
    Foods; 2022 May; 11(10):. PubMed ID: 35626966
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The ability of video image analysis to predict lean meat yield and EUROP score of lamb carcasses.
    Einarsson E; Eythórsdóttir E; Smith CR; Jónmundsson JV
    Animal; 2014 Jul; 8(7):1170-7. PubMed ID: 24807642
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Composition analysis of beef rib sections by dual-energy X-ray absorptiometry.
    Mitchell AD; Solomon MB; Rumsey TS
    Meat Sci; 1997 Sep; 47(1-2):115-24. PubMed ID: 22062622
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Neonatal body composition: dual-energy X-ray absorptiometry, magnetic resonance imaging, and three-dimensional chemical shift imaging versus chemical analysis in piglets.
    Fusch C; Slotboom J; Fuehrer U; Schumacher R; Keisker A; Zimmermann W; Moessinger A; Boesch C; Blum J
    Pediatr Res; 1999 Oct; 46(4):465-73. PubMed ID: 10509370
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Carcass composition and meat quality of equally mature kids and lambs.
    Santos VA; Silva SR; Azevedo JM
    J Anim Sci; 2008 Aug; 86(8):1943-50. PubMed ID: 18676732
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Carcass traits of Kheri lambs maintained on different system of feeding management.
    Karim SA; Porwal K; Kumar S; Singh VK
    Meat Sci; 2007 Jul; 76(3):395-401. PubMed ID: 22060980
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.