These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

126 related articles for article (PubMed ID: 22062296)

  • 21. True retention of nutrients on cooking of Australian retail lamb cuts of differing carcass classification characteristics.
    Kosulwat S; Greenfield H; Buckle KA
    Meat Sci; 2003 Dec; 65(4):1407-12. PubMed ID: 22063785
    [TBL] [Abstract][Full Text] [Related]  

  • 22. In vivo prediction of carcass composition and muscularity in purebred Texel lambs.
    Wolf BT; Jones DA; Owen MG
    Meat Sci; 2006 Oct; 74(2):416-23. PubMed ID: 22062854
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Dual-energy X-ray absorptiometry (DXA) can accurately and nondestructively measure the body composition of small, free-living rodents.
    Stevenson KT; van Tets IG
    Physiol Biochem Zool; 2008; 81(3):373-82. PubMed ID: 18419562
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Compared development of intermuscular and subcutaneous fat in carcass and primal cuts of growing pigs from 30 to 140kg body weight.
    Kouba M; Bonneau M
    Meat Sci; 2009 Jan; 81(1):270-4. PubMed ID: 22063994
    [TBL] [Abstract][Full Text] [Related]  

  • 25. [A comparative study of a bioelectrical impedance method and dual energy X-ray absorptiometry for body composition analysis].
    Kawakami K; Ling QC; Nakamura N; Ikeda Y; Ohno M
    Rinsho Byori; 1994 Oct; 42(10):1088-92. PubMed ID: 7996720
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Winter-feeding systems for gestating sheep II. Effects on feedlot performance, glucose tolerance, and carcass composition of lamb progeny.
    Radunz AE; Fluharty FL; Susin I; Felix TL; Zerby HN; Loerch SC
    J Anim Sci; 2011 Feb; 89(2):478-88. PubMed ID: 21262978
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Assessing beef carcass tissue weights using computed tomography spirals of primal cuts.
    Navajas EA; Glasbey CA; Fisher AV; Ross DW; Hyslop JJ; Richardson RI; Simm G; Roehe R
    Meat Sci; 2010 Jan; 84(1):30-8. PubMed ID: 20374751
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Mineral composition of lamb carcasses from the United States and New Zealand.
    Lin KC; Cross HR; Johnson HK; Breidenstein BC; Randecker V; Field RA
    Meat Sci; 1988; 24(1):47-59. PubMed ID: 22055808
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Improvement in the accuracy of dual energy x-ray absorptiometry for whole body and regional analysis of body composition: validation using piglets and methodologic considerations in infants.
    Brunton JA; Weiler HA; Atkinson SA
    Pediatr Res; 1997 Apr; 41(4 Pt 1):590-6. PubMed ID: 9098865
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Using segmental bioimpedance analysis to estimate soft tissue and chemical composition of retail cuts and carcasses of lambs.
    Moro AB; Montanholi YR; Galvani DB; Bertemes-Filho P; Venturini RS; Menegon AM; Rosa JS; da Silva LP; Pires CC
    Meat Sci; 2022 Jan; 183():108644. PubMed ID: 34390896
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Composition and sensory evaluation of lamb carcasses used for the traditional Mexican lamb dish, "barbacoa".
    Rubio MS; Torres N; Gutiérrez J; Méndez RD
    Meat Sci; 2004 Jun; 67(2):359-64. PubMed ID: 22061334
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Predicting pork carcass and primal lean content from electromagnetic scans.
    Berg EP; Asfaw A; Ellersieck MR
    Meat Sci; 2002 Feb; 60(2):133-9. PubMed ID: 22063236
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Evaluation of an Image Analysis Approach to Predicting Primal Cuts and Lean in Light Lamb Carcasses.
    Batista AC; Santos V; Afonso J; Guedes C; Azevedo J; Teixeira A; Silva S
    Animals (Basel); 2021 May; 11(5):. PubMed ID: 34065849
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Incremental changes in total and regional body composition of growing pigs measured by dual-energy x-ray absorptiometry.
    Mitchell AD; Conway JM; Scholz AM
    Growth Dev Aging; 1996; 60(2):95-105. PubMed ID: 8880164
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Effects of continual fluctuation in feed intake on growth performance response and carcass fat-to-lean ratio in grower-finisher pigs.
    Mullan BP; Trezona M; D'Souza DN; Kim JC
    J Anim Sci; 2009 Jan; 87(1):179-88. PubMed ID: 18765851
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Effects of crossbreeding Mexican Pelibuey sheep with Rambouillet and Suffolk on carcass traits.
    Gutiérrez J; Rubio MS; Méndez RD
    Meat Sci; 2005 May; 70(1):1-5. PubMed ID: 22063274
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Predicting the composition of lamb carcases using alternative fat and muscle depth measures.
    Hopkins DL; Ponnampalam EN; Warner RD
    Meat Sci; 2008 Apr; 78(4):400-5. PubMed ID: 22062458
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Carcass and Primal Composition Predictions Using Camera Vision Systems (CVS) and Dual-Energy X-ray Absorptiometry (DXA) Technologies on Mature Cows.
    Segura J; Aalhus JL; Prieto N; Larsen IL; Juárez M; López-Campos Ó
    Foods; 2021 May; 10(5):. PubMed ID: 34070040
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Prediction of carcass composition by impedance spectroscopy in lambs of similar weight.
    Altmann M; Pliquett U; Suess R; Borell Ev
    Meat Sci; 2005 Jun; 70(2):319-27. PubMed ID: 22063489
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Prediction of primal and retail cut weights, tissue composition and yields of youthful cattle carcasses using computer vision systems; whole carcass camera and/or ribeye camera.
    Segura J; Aalhus JL; Prieto N; Zawadski S; Scott H; López-Campos Ó
    Meat Sci; 2023 May; 199():109120. PubMed ID: 36791485
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.