BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

146 related articles for article (PubMed ID: 22062389)

  • 1. Estimation of Canadian and European lean yields and composition of pig carcasses by dual-energy X-ray absorptiometry.
    Marcoux M; Bernier JF; Pomar C
    Meat Sci; 2003 Mar; 63(3):359-65. PubMed ID: 22062389
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The use of dual-energy X-ray absorptiometry to estimate the dissected composition of lamb carcasses.
    Mercier J; Pomar C; Marcoux M; Goulet F; Thériault M; Castonguay FW
    Meat Sci; 2006 Jun; 73(2):249-57. PubMed ID: 22062296
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The accuracy of predicting carcass composition of three different pig genetic lines by dual-energy X-ray absorptiometry.
    Marcoux M; Faucitano L; Pomar C
    Meat Sci; 2005 Aug; 70(4):655-63. PubMed ID: 22063893
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Composition analysis of pork carcasses by dual-energy x-ray absorptiometry.
    Mitchell AD; Scholz AM; Pursel VG; Evock-Clover CM
    J Anim Sci; 1998 Aug; 76(8):2104-14. PubMed ID: 9734860
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Comparison of an advanced automated ultrasonic scanner (AutoFom III) and a handheld optical probe (Destron PG-100) to determine lean yield in pork carcasses.
    Dorleku JB; Wormsbecher L; Christensen M; Campbell CP; Mandell IB; Bohrer BM
    J Anim Sci; 2023 Jan; 101():. PubMed ID: 36807699
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Carcass traits, cut yields, and compositional end points in high-lean-yielding pork carcasses: effects of 10th rib backfat and loin eye area.
    Pringle TD; Williams SE
    J Anim Sci; 2001 Jan; 79(1):115-21. PubMed ID: 11204691
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Electromagnetic scanning of pork carcasses in an on-line industrial configuration.
    Berg EP; Forrest JC; Fisher JE
    J Anim Sci; 1994 Oct; 72(10):2642-52. PubMed ID: 7883623
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Rapid and non-destructive determination of lean fat and bone content in beef using dual energy X-ray absorptiometry.
    López-Campos Ó; Roberts JC; Larsen IL; Prieto N; Juárez M; Dugan MER; Aalhus JL
    Meat Sci; 2018 Dec; 146():140-146. PubMed ID: 30145410
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Prediction of lean and fat composition in swine carcasses from ham area measurements with image analysis.
    Jia J; Schinckel AP; Forrest JC; Chen W; Wagner JR
    Meat Sci; 2010 Jun; 85(2):240-4. PubMed ID: 20374892
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Assessing the accuracy of measurements obtained by dual-energy X-ray absorptiometry on pig carcasses and primal cuts.
    Kipper M; Marcoux M; Andretta I; Pomar C
    Meat Sci; 2019 Feb; 148():79-87. PubMed ID: 30340164
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Accuracy of dual energy X-ray absorptiometry (DXA) in assessing carcass composition from different pig populations.
    Soladoye OP; López Campos Ó; Aalhus JL; Gariépy C; Shand P; Juárez M
    Meat Sci; 2016 Nov; 121():310-316. PubMed ID: 27395824
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Predicting pork carcass and primal lean content from electromagnetic scans.
    Berg EP; Asfaw A; Ellersieck MR
    Meat Sci; 2002 Feb; 60(2):133-9. PubMed ID: 22063236
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Evaluation of the E+V video image analysis system as a predictor of pork carcass meat yield.
    McClure EK; Scanga JA; Belk KE; Smith GC
    J Anim Sci; 2003 May; 81(5):1193-201. PubMed ID: 12772846
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Using current on-line carcass evaluation parameters to estimate boneless and bone-in pork carcass yield as influenced by trim level.
    Berg EP; Grams DW; Miller RK; Wise JW; Forrest JC; Savell JW
    J Anim Sci; 1999 Aug; 77(8):1977-84. PubMed ID: 10461971
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Prediction of primal and retail cut weights, tissue composition and yields of youthful cattle carcasses using computer vision systems; whole carcass camera and/or ribeye camera.
    Segura J; Aalhus JL; Prieto N; Zawadski S; Scott H; López-Campos Ó
    Meat Sci; 2023 May; 199():109120. PubMed ID: 36791485
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Dual-energy X-ray absorptiometry is a reliable non-invasive technique for determining whole body composition of chickens.
    Schallier S; Li C; Lesuisse J; Janssens GPJ; Everaert N; Buyse J
    Poult Sci; 2019 Jun; 98(6):2652-2661. PubMed ID: 30839076
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Growth, development, and carcass composition in five genotypes of swine.
    Gu Y; Schinckel AP; Martin TG
    J Anim Sci; 1992 Jun; 70(6):1719-29. PubMed ID: 1634396
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Influence of body condition score on carcass characteristics and subprimal yield from cull beef cows.
    Apple JK; Davis JC; Stephenson J; Hankins JE; Davis JR; Beaty SL
    J Anim Sci; 1999 Oct; 77(10):2660-9. PubMed ID: 10521025
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Dual X-ray absorptiometry accurately predicts carcass composition from live sheep and chemical composition of live and dead sheep.
    Pearce KL; Ferguson M; Gardner G; Smith N; Greef J; Pethick DW
    Meat Sci; 2009 Jan; 81(1):285-93. PubMed ID: 22063997
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Pork carcass composition: II. Use of indicator cuts for predicting carcass composition.
    Swensen K; Ellis M; Brewer MS; Novakofski J; McKeith FK
    J Anim Sci; 1998 Sep; 76(9):2405-14. PubMed ID: 9781497
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.