These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

146 related articles for article (PubMed ID: 22062389)

  • 21. Dual energy X-ray absorptiometry precisely and accurately predicts lamb carcass composition at abattoir chain speed across a range of phenotypic and genotypic variables.
    Connaughton SL; Williams A; Anderson F; Kelman KR; Gardner GE
    Animal; 2020 Oct; 14(10):2194-2202. PubMed ID: 32398191
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Effects of increasing lysine on carcass composition and cutting yields of immunologically castrated male pigs.
    Boler DD; Kutzler LW; Meeuwse DM; King VL; Campion DR; McKeith FK; Killefer J
    J Anim Sci; 2011 Jul; 89(7):2189-99. PubMed ID: 21383034
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Predicting fat, lean and the weights of primal cuts for growing pigs of different genotypes and sexes using computed tomography.
    Carabús A; Sainz RD; Oltjen JW; Gispert M; Font-i-Furnols M
    J Anim Sci; 2015 Mar; 93(3):1388-97. PubMed ID: 26020915
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Genetic parameters for pork carcass components.
    Newcom DW; Baas TJ; Mabry JW; Goodwin RN
    J Anim Sci; 2002 Dec; 80(12):3099-106. PubMed ID: 12542149
    [TBL] [Abstract][Full Text] [Related]  

  • 25. A summary review of carcass cutability data comparing primal value of immunologically and physically castrated barrows.
    Harsh BN; Cowles B; Johnson RC; Pollmann DS; Schroeder AL; Dilger AC; Boler DD
    Transl Anim Sci; 2017 Feb; 1(1):77-89. PubMed ID: 32704631
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Evaluation of an Image Analysis Approach to Predicting Primal Cuts and Lean in Light Lamb Carcasses.
    Batista AC; Santos V; Afonso J; Guedes C; Azevedo J; Teixeira A; Silva S
    Animals (Basel); 2021 May; 11(5):. PubMed ID: 34065849
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Carcass and Primal Composition Predictions Using Camera Vision Systems (CVS) and Dual-Energy X-ray Absorptiometry (DXA) Technologies on Mature Cows.
    Segura J; Aalhus JL; Prieto N; Larsen IL; Juárez M; López-Campos Ó
    Foods; 2021 May; 10(5):. PubMed ID: 34070040
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Prediction of pork carcass composition based on cross-sectional region analysis of dual energy X-ray absorptiometry (DXA) scans.
    Mitchell AD; Scholz AM; Pursel VG
    Meat Sci; 2003 Feb; 63(2):265-71. PubMed ID: 22062187
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Repeatability and reproducibility of measurements obtained by dual-energy X-ray absorptiometry on pig carcasses.
    Kipper M; Marcoux M; Andretta I; Pomar C
    J Anim Sci; 2018 May; 96(5):2027-2037. PubMed ID: 29722809
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Genetic parameters for carcass composition and pork quality estimated in a commercial production chain.
    van Wijk HJ; Arts DJ; Matthews JO; Webster M; Ducro BJ; Knol EF
    J Anim Sci; 2005 Feb; 83(2):324-33. PubMed ID: 15644503
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Verification of Reproducibility of VCS2000 Equipment for Mechanical Measurement of Korean Landrace×Yorkshire (F1), F1×Duroc (LYD) Pig Carcasses.
    Park Y; Kim K; Kim J; Seo J; Choi J
    Food Sci Anim Resour; 2023 Jul; 43(4):553-562. PubMed ID: 37483996
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Ractopamine treatment biases in the prediction of pork carcass composition.
    Schinckel AP; Herr CT; Richert BT; Forrest JC; Einstein ME
    J Anim Sci; 2003 Jan; 81(1):16-28. PubMed ID: 12597368
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Application of AutoFom III equipment for prediction of primal and commercial cut weight of Korean pig carcasses.
    Choi JS; Kwon KM; Lee YK; Joeng JU; Lee KO; Jin SK; Choi YI; Lee JJ
    Asian-Australas J Anim Sci; 2018 Oct; 31(10):1670-1676. PubMed ID: 30056685
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Comparison of variability in pork carcass composition and quality between barrows and gilts.
    Overholt MF; Arkfeld EK; Mohrhauser DA; King DA; Wheeler TL; Dilger AC; Shackelford SD; Boler DD
    J Anim Sci; 2016 Oct; 94(10):4415-4426. PubMed ID: 27898864
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Pork carcass composition derived from a neural network model of electromagnetic scans.
    Berg EP; Engel BA; Forrest JC
    J Anim Sci; 1998 Jan; 76(1):18-22. PubMed ID: 9464879
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Prediction of carcass composition, ham and foreleg weights, and lean meat yields of Iberian pigs using ultrasound measurements in live animals.
    Ayuso D; González A; Hernández F; Corral JM; Izquierdo M
    J Anim Sci; 2013 Apr; 91(4):1884-92. PubMed ID: 23408817
    [TBL] [Abstract][Full Text] [Related]  

  • 37. The potential for dual energy X-ray absorptiometry to predict lamb eating quality.
    Anderson F; Payne C; Pannier L; Pethick DW; Gardner GE
    Meat Sci; 2021 Nov; 181():108434. PubMed ID: 33541737
    [TBL] [Abstract][Full Text] [Related]  

  • 38. The prediction of percentage of fat in pork carcasses.
    Johnson LP; Miller MF; Haydon KD; Reagan JO
    J Anim Sci; 1990 Dec; 68(12):4185-92. PubMed ID: 2286560
    [TBL] [Abstract][Full Text] [Related]  

  • 39. The ability of video image analysis to predict lean meat yield and EUROP score of lamb carcasses.
    Einarsson E; Eythórsdóttir E; Smith CR; Jónmundsson JV
    Animal; 2014 Jul; 8(7):1170-7. PubMed ID: 24807642
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Lean content prediction in pig carcasses, loin and ham by computed tomography (CT) using a density model.
    Picouet PA; Teran F; Gispert M; Font i Furnols M
    Meat Sci; 2010 Nov; 86(3):616-22. PubMed ID: 20656413
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.