These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

138 related articles for article (PubMed ID: 22063236)

  • 1. Predicting pork carcass and primal lean content from electromagnetic scans.
    Berg EP; Asfaw A; Ellersieck MR
    Meat Sci; 2002 Feb; 60(2):133-9. PubMed ID: 22063236
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Electromagnetic scanning of pork carcasses in an on-line industrial configuration.
    Berg EP; Forrest JC; Fisher JE
    J Anim Sci; 1994 Oct; 72(10):2642-52. PubMed ID: 7883623
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Using current on-line carcass evaluation parameters to estimate boneless and bone-in pork carcass yield as influenced by trim level.
    Berg EP; Grams DW; Miller RK; Wise JW; Forrest JC; Savell JW
    J Anim Sci; 1999 Aug; 77(8):1977-84. PubMed ID: 10461971
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Evaluation of the E+V video image analysis system as a predictor of pork carcass meat yield.
    McClure EK; Scanga JA; Belk KE; Smith GC
    J Anim Sci; 2003 May; 81(5):1193-201. PubMed ID: 12772846
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Carcass traits, cut yields, and compositional end points in high-lean-yielding pork carcasses: effects of 10th rib backfat and loin eye area.
    Pringle TD; Williams SE
    J Anim Sci; 2001 Jan; 79(1):115-21. PubMed ID: 11204691
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Comparison of an advanced automated ultrasonic scanner (AutoFom III) and a handheld optical probe (Destron PG-100) to determine lean yield in pork carcasses.
    Dorleku JB; Wormsbecher L; Christensen M; Campbell CP; Mandell IB; Bohrer BM
    J Anim Sci; 2023 Jan; 101():. PubMed ID: 36807699
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Prediction of lean and fat composition in swine carcasses from ham area measurements with image analysis.
    Jia J; Schinckel AP; Forrest JC; Chen W; Wagner JR
    Meat Sci; 2010 Jun; 85(2):240-4. PubMed ID: 20374892
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Pork carcass composition derived from a neural network model of electromagnetic scans.
    Berg EP; Engel BA; Forrest JC
    J Anim Sci; 1998 Jan; 76(1):18-22. PubMed ID: 9464879
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Pork carcass composition: I. Interrelationships of compositional end points.
    Swensen K; Ellis M; Brewer MS; Novakofski J; McKeith FK
    J Anim Sci; 1998 Sep; 76(9):2399-404. PubMed ID: 9781496
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Pork carcass composition: II. Use of indicator cuts for predicting carcass composition.
    Swensen K; Ellis M; Brewer MS; Novakofski J; McKeith FK
    J Anim Sci; 1998 Sep; 76(9):2405-14. PubMed ID: 9781497
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A summary review of carcass cutability data comparing primal value of immunologically and physically castrated barrows.
    Harsh BN; Cowles B; Johnson RC; Pollmann DS; Schroeder AL; Dilger AC; Boler DD
    Transl Anim Sci; 2017 Feb; 1(1):77-89. PubMed ID: 32704631
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Estimation of Canadian and European lean yields and composition of pig carcasses by dual-energy X-ray absorptiometry.
    Marcoux M; Bernier JF; Pomar C
    Meat Sci; 2003 Mar; 63(3):359-65. PubMed ID: 22062389
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Genetic parameters for pork carcass components.
    Newcom DW; Baas TJ; Mabry JW; Goodwin RN
    J Anim Sci; 2002 Dec; 80(12):3099-106. PubMed ID: 12542149
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The prediction of percentage of protein in pork carcasses.
    Johnson LP; Reagan JO; Haydon KD; Miller MF
    J Anim Sci; 1990 Dec; 68(12):4176-84. PubMed ID: 2286559
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The prediction of percentage of fat in pork carcasses.
    Johnson LP; Miller MF; Haydon KD; Reagan JO
    J Anim Sci; 1990 Dec; 68(12):4185-92. PubMed ID: 2286560
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Composition analysis of pork carcasses by dual-energy x-ray absorptiometry.
    Mitchell AD; Scholz AM; Pursel VG; Evock-Clover CM
    J Anim Sci; 1998 Aug; 76(8):2104-14. PubMed ID: 9734860
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The impact of feeding diets of high or low energy concentration on carcass measurements and the weight of primal and subprimal lean cuts.
    Schinckel AP; Einstein ME; Jungst S; Matthews JO; Fields B; Booher C; Dreadin T; Fralick C; Tabor S; Sosnicki A; Wilson E; Boyd RD
    Asian-Australas J Anim Sci; 2012 Apr; 25(4):531-40. PubMed ID: 25049594
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Electromagnetic scanning of beef quarters to predict carcass and primal lean content.
    Gwartney BL; Calkins CR; Lin RS; Forrest JC; Parkhurst AM; Lemenager RP
    J Anim Sci; 1994 Nov; 72(11):2836-42. PubMed ID: 7730176
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Application of AutoFom III equipment for prediction of primal and commercial cut weight of Korean pig carcasses.
    Choi JS; Kwon KM; Lee YK; Joeng JU; Lee KO; Jin SK; Choi YI; Lee JJ
    Asian-Australas J Anim Sci; 2018 Oct; 31(10):1670-1676. PubMed ID: 30056685
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Growth, development, and carcass composition in five genotypes of swine.
    Gu Y; Schinckel AP; Martin TG
    J Anim Sci; 1992 Jun; 70(6):1719-29. PubMed ID: 1634396
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.