These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

115 related articles for article (PubMed ID: 22063693)

  • 1. Prediction of color, texture, and sensory characteristics of beef steaks by visible and near infrared reflectance spectroscopy. A feasibility study.
    Liu Y; Lyon BG; Windham WR; Realini CE; Pringle TD; Duckett S
    Meat Sci; 2003 Nov; 65(3):1107-15. PubMed ID: 22063693
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Field testing of a system for online classification of beef carcasses for longissimus tenderness using visible and near-infrared reflectance spectroscopy.
    Shackelford SD; Wheeler TL; King DA; Koohmaraie M
    J Anim Sci; 2012 Mar; 90(3):978-88. PubMed ID: 22064739
    [TBL] [Abstract][Full Text] [Related]  

  • 3. On-line classification of US Select beef carcasses for longissimus tenderness using visible and near-infrared reflectance spectroscopy.
    Shackelford SD; Wheeler TL; Koohmaraie M
    Meat Sci; 2005 Mar; 69(3):409-15. PubMed ID: 22062978
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Near-infrared reflectance spectroscopy for predicting chemical, instrumental and sensory quality of beef.
    Ripoll G; Albertí P; Panea B; Olleta JL; Sañudo C
    Meat Sci; 2008 Nov; 80(3):697-702. PubMed ID: 22063585
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Prediction of physical, color, and sensory characteristics of broiler breasts by visible/near infrared reflectance spectroscopy.
    Liu Y; Lyon BG; Windham WR; Lyon CE; Savage EM
    Poult Sci; 2004 Aug; 83(8):1467-74. PubMed ID: 15339027
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Predicting beef tenderness using near-infrared spectroscopy.
    Rust SR; Price DM; Subbiah J; Kranzler G; Hilton GG; Vanoverbeke DL; Morgan JB
    J Anim Sci; 2008 Jan; 86(1):211-9. PubMed ID: 17911226
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Technical note: validation of a model for online classification of US Select beef carcasses for longissimus tenderness using visible and near-infrared reflectance spectroscopy.
    Shackelford SD; Wheeler TL; Koohmaraie M
    J Anim Sci; 2012 Mar; 90(3):973-7. PubMed ID: 22064741
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Using the near-infrared system to sort various beef middle and end muscle cuts into tenderness categories.
    Price DM; Hilton GG; VanOverbeke DL; Morgan JB
    J Anim Sci; 2008 Feb; 86(2):413-8. PubMed ID: 17965325
    [TBL] [Abstract][Full Text] [Related]  

  • 9. On-line application of visible and near infrared reflectance spectroscopy to predict chemical-physical and sensory characteristics of beef quality.
    Prieto N; Ross DW; Navajas EA; Nute GR; Richardson RI; Hyslop JJ; Simm G; Roehe R
    Meat Sci; 2009 Sep; 83(1):96-103. PubMed ID: 20416617
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Prediction of sensory characteristics of beef by near-infrared spectroscopy.
    Hildrum KI; Nilsen BN; Mielnik M; Næs T
    Meat Sci; 1994; 38(1):67-80. PubMed ID: 22059609
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Development of a system for classification of pork loins for tenderness using visible and near-infrared reflectance spectroscopy.
    Shackelford SD; King DA; Wheeler TL
    J Anim Sci; 2011 Nov; 89(11):3803-8. PubMed ID: 21680788
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Predicting pork quality using Vis/NIR spectroscopy.
    Balage JM; da Luz E Silva S; Gomide CA; Bonin Mde N; Figueira AC
    Meat Sci; 2015 Oct; 108():37-43. PubMed ID: 26021598
    [TBL] [Abstract][Full Text] [Related]  

  • 13. [The determination of beef tenderness using near-infrared spectroscopy].
    Zhao JW; Zhai JM; Liu MH; Cai JR
    Guang Pu Xue Yu Guang Pu Fen Xi; 2006 Apr; 26(4):640-2. PubMed ID: 16836128
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [Spectroscopic diagnosis of chronic fatigue syndrome by multivariate analysis of visible and near-infrared spectra].
    Sakudo A; Kuratsune H; Hakariya Y; Kobayashi T; Ikuta K
    Nihon Rinsho; 2007 Jun; 65(6):1051-6. PubMed ID: 17561696
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Determination of total nitrogen content, pH, density, refractive index, and brix in Thai fish sauces and their classification by near-infrared spectroscopy with searching combination moving window partial least squares.
    Ritthiruangdej P; Kasemsumran S; Suwonsichon T; Haruthaithanasan V; Thanapase W; Ozaki Y
    Analyst; 2005 Oct; 130(10):1439-45. PubMed ID: 16172671
    [TBL] [Abstract][Full Text] [Related]  

  • 16. [Nondestructive measurement of vitamin C in Nanfeng tangerine by visible/near-infrared diffuse reflectance spectroscopy].
    Liu YD; Chen XM; Sun XD
    Guang Pu Xue Yu Guang Pu Fen Xi; 2008 Oct; 28(10):2318-20. PubMed ID: 19123397
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Spectroscopic diagnosis of chronic fatigue syndrome by visible and near-infrared spectroscopy in serum samples.
    Sakudo A; Kuratsune H; Kobayashi T; Tajima S; Watanabe Y; Ikuta K
    Biochem Biophys Res Commun; 2006 Jul; 345(4):1513-6. PubMed ID: 16730652
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Geographical classification of honey samples by near-infrared spectroscopy: a feasibility study.
    Woodcock T; Downey G; Kelly JD; O'Donnell C
    J Agric Food Chem; 2007 Oct; 55(22):9128-34. PubMed ID: 17927137
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Using reflectance spectroscopy to predict beef tenderness.
    Bowling MB; Vote DJ; Belk KE; Scanga JA; Tatum JD; Smith GC
    Meat Sci; 2009 May; 82(1):1-5. PubMed ID: 20416616
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Feasibility study on the potential of visible and near infrared reflectance spectroscopy to measure alpaca fibre characteristics.
    Gishen M; Cozzolino D
    Animal; 2007 Jul; 1(6):899-904. PubMed ID: 22444755
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.