BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

135 related articles for article (PubMed ID: 22063997)

  • 21. Improvement in the accuracy of dual energy x-ray absorptiometry for whole body and regional analysis of body composition: validation using piglets and methodologic considerations in infants.
    Brunton JA; Weiler HA; Atkinson SA
    Pediatr Res; 1997 Apr; 41(4 Pt 1):590-6. PubMed ID: 9098865
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Prediction of carcass composition by impedance spectroscopy in lambs of similar weight.
    Altmann M; Pliquett U; Suess R; Borell Ev
    Meat Sci; 2005 Jun; 70(2):319-27. PubMed ID: 22063489
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Dual energy X-ray absorptiometry precisely and accurately predicts lamb carcass composition at abattoir chain speed across a range of phenotypic and genotypic variables.
    Connaughton SL; Williams A; Anderson F; Kelman KR; Gardner GE
    Animal; 2020 Oct; 14(10):2194-2202. PubMed ID: 32398191
    [TBL] [Abstract][Full Text] [Related]  

  • 24. USDA yield grades and various carcass traits as predictors of carcass composition.
    Lunt DK; Smith GC; Savell JW; Murphey CE; Carpenter ZL; McKeith FK; Johnson DD
    Meat Sci; 1985; 14(3):153-64. PubMed ID: 22055934
    [TBL] [Abstract][Full Text] [Related]  

  • 25. The value of muscular and skeletal scores in the live animal and carcass classification scores as indicators of carcass composition in cattle.
    Drennan MJ; McGee M; Keane MG
    Animal; 2008 May; 2(5):752-60. PubMed ID: 22443601
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Estimation of Canadian and European lean yields and composition of pig carcasses by dual-energy X-ray absorptiometry.
    Marcoux M; Bernier JF; Pomar C
    Meat Sci; 2003 Mar; 63(3):359-65. PubMed ID: 22062389
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Use of fan beam dual energy x-ray absorptiometry to measure body composition of piglets.
    Koo WW; Hammami M; Hockman EM
    J Nutr; 2002 Jun; 132(6):1380-3. PubMed ID: 12042462
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Predicting tissue distribution and partitioning in terminal sire sheep using x-ray computed tomography.
    Macfarlane JM; Lewis RM; Emmans GC; Young MJ; Simm G
    J Anim Sci; 2009 Jan; 87(1):107-18. PubMed ID: 18641178
    [TBL] [Abstract][Full Text] [Related]  

  • 29. The effect of ingesting a saltbush and barley ration on the carcass and eating quality of sheepmeat.
    Pearce KL; Pethick DW; Masters DG
    Animal; 2008 Mar; 2(3):479-90. PubMed ID: 22445051
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Use of magnetic resonance imaging to predict the body composition of pigs in vivo.
    Kremer PV; Förster M; Scholz AM
    Animal; 2013 Jun; 7(6):879-84. PubMed ID: 23228200
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Conjugated linoleic acid decreases fat accretion in pigs: evaluation by dual-energy X-ray absorptiometry.
    Ostrowska E; Suster D; Muralitharan M; Cross RF; Leury BJ; Bauman DE; Dunshea FR
    Br J Nutr; 2003 Feb; 89(2):219-29. PubMed ID: 12575906
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Predicting beef carcass composition using tissue weights of a primal cut assessed by computed tomography.
    Navajas EA; Richardson RI; Fisher AV; Hyslop JJ; Ross DW; Prieto N; Simm G; Roehe R
    Animal; 2010 Nov; 4(11):1810-7. PubMed ID: 22445141
    [TBL] [Abstract][Full Text] [Related]  

  • 33. New bioimpedance analysis system: improved phenotyping with whole-body analysis.
    Pietrobelli A; Rubiano F; St-Onge MP; Heymsfield SB
    Eur J Clin Nutr; 2004 Nov; 58(11):1479-84. PubMed ID: 15138459
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Evaluation of alternative measures of pork carcass composition.
    Schinckel AP; Wagner JR; Forrest JC; Einstein ME
    J Anim Sci; 2001 May; 79(5):1093-119. PubMed ID: 11374529
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Body composition analysis of small pigs by dual-energy x-ray absorptiometry.
    Mitchell AD; Scholz AM; Conway JM
    J Anim Sci; 1998 Sep; 76(9):2392-8. PubMed ID: 9781495
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Effects of age at slaughter and feeding regime on slaughter weight and carcass composition in mice.
    Doolittle DP; Newman S; Croak-Brossman SJ; Harris DL
    Growth; 1984; 48(2):138-47. PubMed ID: 6469047
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Body composition in a seasonal model of obesity: longitudinal measures and validation of DXA.
    Hunter HL; Nagy TR
    Obes Res; 2002 Nov; 10(11):1180-7. PubMed ID: 12429883
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Dual-energy X-ray absorptiometry scans accurately predict differing body fat content in live sheep.
    Miller DW; Bennett EJ; Harrison JL; Anderson F; Adam CL
    J Anim Sci Biotechnol; 2018; 9():80. PubMed ID: 30455880
    [TBL] [Abstract][Full Text] [Related]  

  • 39. An evaluation of dual-energy X-Ray absorptiometry and underwater weighing to estimate body composition by means of carcass analysis in piglets.
    Elowsson P; Forslund AH; Mallmin H; Feuk U; Hansson I; Carlsten J
    J Nutr; 1998 Sep; 128(9):1543-9. PubMed ID: 9732317
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Associations between nematode larval challenge and gastrointestinal tract size that affect carcass productivity in sheep.
    Jacobson C; Pluske J; Besier RB; Bell K; Pethick D
    Vet Parasitol; 2009 May; 161(3-4):248-54. PubMed ID: 19217210
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.