These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
191 related articles for article (PubMed ID: 22064142)
21. Isolation and characterization of mu-calpain, m-calpain, and calpastatin from postmortem muscle. I. Initial steps. Camou JP; Mares SW; Marchello JA; Vazquez R; Taylor M; Thompson VF; Goll DE J Anim Sci; 2007 Dec; 85(12):3400-14. PubMed ID: 17878283 [TBL] [Abstract][Full Text] [Related]
22. Micro-calpain is essential for postmortem proteolysis of muscle proteins. Geesink GH; Kuchay S; Chishti AH; Koohmaraie M J Anim Sci; 2006 Oct; 84(10):2834-40. PubMed ID: 16971586 [TBL] [Abstract][Full Text] [Related]
23. Calpain 3/p94 is not involved in postmortem proteolysis. Geesink GH; Taylor RG; Koohmaraie M J Anim Sci; 2005 Jul; 83(7):1646-52. PubMed ID: 15956473 [TBL] [Abstract][Full Text] [Related]
24. A New Insight into the Role of Calpains in Post-mortem Meat Tenderization in Domestic Animals: A review. Lian T; Wang L; Liu Y Asian-Australas J Anim Sci; 2013 Mar; 26(3):443-54. PubMed ID: 25049808 [TBL] [Abstract][Full Text] [Related]
25. Post mortem development of meat quality as related to changes in cytoskeletal proteins of chicken muscles. Tomaszewska-Gras J; Schreurs FJ; Kijowski J Br Poult Sci; 2011 Apr; 52(2):189-201. PubMed ID: 21491242 [TBL] [Abstract][Full Text] [Related]
26. Calpain system in vitro activity and myofibril fragmentation index in fallow deer (Dama dama): effects of age and supplementary feeding. Volpelli LA; Failla S; Sepulcri A; Piasentier E Meat Sci; 2005 Mar; 69(3):579-82. PubMed ID: 22062999 [TBL] [Abstract][Full Text] [Related]
27. In vitro degradation of bovine myofibrils is caused by μ-calpain, not caspase-3. Mohrhauser DA; Underwood KR; Weaver AD J Anim Sci; 2011 Mar; 89(3):798-808. PubMed ID: 20971887 [TBL] [Abstract][Full Text] [Related]
28. Effect of preslaughter feed withdrawal period on longissimus tenderness and the expression of calpains in the ovine. Ilian MA; Morton JD; Bekhit AE; Roberts N; Palmer B; Sorimachi H; Bickerstaffe R J Agric Food Chem; 2001 Apr; 49(4):1990-8. PubMed ID: 11308358 [TBL] [Abstract][Full Text] [Related]
29. Effect of nitric oxide on μ-calpain activation, protein proteolysis, and protein oxidation of pork during post-mortem aging. Li YP; Liu R; Zhang WG; Fu QQ; Liu N; Zhou GH J Agric Food Chem; 2014 Jun; 62(25):5972-7. PubMed ID: 24910006 [TBL] [Abstract][Full Text] [Related]
30. Biochemistry of postmortem muscle - lessons on mechanisms of meat tenderization. Huff Lonergan E; Zhang W; Lonergan SM Meat Sci; 2010 Sep; 86(1):184-95. PubMed ID: 20566247 [TBL] [Abstract][Full Text] [Related]
31. Inhibition of protease activity 2. Degradation of myofibrillar proteins, myofibril examination and determination of free calcium levels. Hopkins DL; Thompson JM Meat Sci; 2001 Oct; 59(2):199-209. PubMed ID: 22062679 [TBL] [Abstract][Full Text] [Related]
32. Effect of postmortem storage on activity of mu- and m-calpain in five bovine muscles. Camou JP; Marchello JA; Thompson VF; Mares SW; Goll DE J Anim Sci; 2007 Oct; 85(10):2670-81. PubMed ID: 17565059 [TBL] [Abstract][Full Text] [Related]
33. Investigation on CAST, CAPN1 and CAPN3 porcine gene polymorphisms and expression in relation to post-mortem calpain activity in muscle and meat quality. Gandolfi G; Pomponio L; Ertbjerg P; Karlsson AH; Nanni Costa L; Lametsch R; Russo V; Davoli R Meat Sci; 2011 Aug; 88(4):694-700. PubMed ID: 21450414 [TBL] [Abstract][Full Text] [Related]
34. Effects of stepwise chilling with calcium incubation on proteolysis and tenderization in postmortem goose muscle. Chang YS Poult Sci; 2023 Aug; 102(8):102811. PubMed ID: 37300909 [TBL] [Abstract][Full Text] [Related]
35. The development of meat tenderness is likely to be compartmentalised by ultimate pH. Lomiwes D; Farouk MM; Wu G; Young OA Meat Sci; 2014 Jan; 96(1):646-51. PubMed ID: 24060535 [TBL] [Abstract][Full Text] [Related]
36. Sarcoplasmic and myofibril-bound calpains during storage of pork longissimus muscle: New insights on protein degradation. Lyu J; Ertbjerg P Food Chem; 2022 Mar; 372():131347. PubMed ID: 34818749 [TBL] [Abstract][Full Text] [Related]
37. iTRAQ-based proteomic analysis reveals the underlying mechanism of postmortem tenderization of refrigerated porcine Longissimus thoracis et lumborum muscle. Xu L; He Y; Yuan X; Liu K; Cui Y; Ma H; Ma C; Yu X Meat Sci; 2023 Mar; 197():109068. PubMed ID: 36495834 [TBL] [Abstract][Full Text] [Related]
38. The physical and biochemical changes in springbok (Antidorcas marsupialis) Longissimus thoracis et lumborum and Biceps femoris muscle during ageing. North MK; Frylinck L; Hoffman LC Meat Sci; 2015 Dec; 110():145-52. PubMed ID: 26225930 [TBL] [Abstract][Full Text] [Related]
39. In vitro study to evaluate the degradation of bovine muscle proteins post-mortem by proteasome and μ-calpain. Houbak MB; Ertbjerg P; Therkildsen M Meat Sci; 2008 May; 79(1):77-85. PubMed ID: 22062600 [TBL] [Abstract][Full Text] [Related]
40. Effect of age on calpain changes in postmortem goose muscle. Chang YS; Stromer MH; Chou RR Poult Sci; 2019 Nov; 98(11):6131-6137. PubMed ID: 31111925 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]