These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
127 related articles for article (PubMed ID: 22064362)
1. Reactive oxygen species are produced at low glucose and contribute to the activation of AMPK in insulin-secreting cells. Sarre A; Gabrielli J; Vial G; Leverve XM; Assimacopoulos-Jeannet F Free Radic Biol Med; 2012 Jan; 52(1):142-50. PubMed ID: 22064362 [TBL] [Abstract][Full Text] [Related]
2. Leptin induces mitochondrial superoxide production and monocyte chemoattractant protein-1 expression in aortic endothelial cells by increasing fatty acid oxidation via protein kinase A. Yamagishi SI; Edelstein D; Du XL; Kaneda Y; Guzmán M; Brownlee M J Biol Chem; 2001 Jul; 276(27):25096-100. PubMed ID: 11342529 [TBL] [Abstract][Full Text] [Related]
3. Methyl succinate antagonises biguanide-induced AMPK-activation and death of pancreatic beta-cells through restoration of mitochondrial electron transfer. Hinke SA; Martens GA; Cai Y; Finsi J; Heimberg H; Pipeleers D; Van de Casteele M Br J Pharmacol; 2007 Apr; 150(8):1031-43. PubMed ID: 17339833 [TBL] [Abstract][Full Text] [Related]
4. Bcl-2 Regulates Reactive Oxygen Species Signaling and a Redox-Sensitive Mitochondrial Proton Leak in Mouse Pancreatic β-Cells. Aharoni-Simon M; Shumiatcher R; Yeung A; Shih AZ; Dolinsky VW; Doucette CA; Luciani DS Endocrinology; 2016 Jun; 157(6):2270-81. PubMed ID: 27070098 [TBL] [Abstract][Full Text] [Related]
5. The role of AMPK and mTOR in nutrient sensing in pancreatic beta-cells. Gleason CE; Lu D; Witters LA; Newgard CB; Birnbaum MJ J Biol Chem; 2007 Apr; 282(14):10341-51. PubMed ID: 17287212 [TBL] [Abstract][Full Text] [Related]
6. AICAR potentiates ROS production induced by chronic high glucose: roles of AMPK in pancreatic beta-cell apoptosis. Kim WH; Lee JW; Suh YH; Lee HJ; Lee SH; Oh YK; Gao B; Jung MH Cell Signal; 2007 Apr; 19(4):791-805. PubMed ID: 17127032 [TBL] [Abstract][Full Text] [Related]
7. Increased oxygen radical formation and mitochondrial dysfunction mediate beta cell apoptosis under conditions of AMP-activated protein kinase stimulation. Cai Y; Martens GA; Hinke SA; Heimberg H; Pipeleers D; Van de Casteele M Free Radic Biol Med; 2007 Jan; 42(1):64-78. PubMed ID: 17157194 [TBL] [Abstract][Full Text] [Related]
8. Starvation-induced autophagy is regulated by mitochondrial reactive oxygen species leading to AMPK activation. Li L; Chen Y; Gibson SB Cell Signal; 2013 Jan; 25(1):50-65. PubMed ID: 23000343 [TBL] [Abstract][Full Text] [Related]
9. The redox regulation of intermediary metabolism by a superoxide-aconitase rheostat. Armstrong JS; Whiteman M; Yang H; Jones DP Bioessays; 2004 Aug; 26(8):894-900. PubMed ID: 15273991 [TBL] [Abstract][Full Text] [Related]
10. Antioxidant mechanism of mitochondria-targeted plastoquinone SkQ1 is suppressed in aglycemic HepG2 cells dependent on oxidative phosphorylation. Ježek J; Engstová H; Ježek P Biochim Biophys Acta Bioenerg; 2017 Sep; 1858(9):750-762. PubMed ID: 28554565 [TBL] [Abstract][Full Text] [Related]
11. Dependence of excitotoxic neurodegeneration on mitochondrial aconitase inactivation. Li QY; Pedersen C; Day BJ; Patel M J Neurochem; 2001 Aug; 78(4):746-55. PubMed ID: 11520895 [TBL] [Abstract][Full Text] [Related]
12. Cyclosporine A-induced nitration of tyrosine 34 MnSOD in endothelial cells: role of mitochondrial superoxide. Redondo-Horcajo M; Romero N; Martínez-Acedo P; Martínez-Ruiz A; Quijano C; Lourenço CF; Movilla N; Enríquez JA; Rodríguez-Pascual F; Rial E; Radi R; Vázquez J; Lamas S Cardiovasc Res; 2010 Jul; 87(2):356-65. PubMed ID: 20106845 [TBL] [Abstract][Full Text] [Related]
13. Mechanism underlying the antioxidant activity of taurine: prevention of mitochondrial oxidant production. Jong CJ; Azuma J; Schaffer S Amino Acids; 2012 Jun; 42(6):2223-32. PubMed ID: 21691752 [TBL] [Abstract][Full Text] [Related]
14. Detection of mitochondria-generated reactive oxygen species in cells using multiple probes and methods: Potentials, pitfalls, and the future. Cheng G; Zielonka M; Dranka B; Kumar SN; Myers CR; Bennett B; Garces AM; Dias Duarte Machado LG; Thiebaut D; Ouari O; Hardy M; Zielonka J; Kalyanaraman B J Biol Chem; 2018 Jun; 293(26):10363-10380. PubMed ID: 29739855 [TBL] [Abstract][Full Text] [Related]
15. Antioxidant properties of rare sugar D-allose: Effects on mitochondrial reactive oxygen species production in Neuro2A cells. Ishihara Y; Katayama K; Sakabe M; Kitamura M; Aizawa M; Takara M; Itoh K J Biosci Bioeng; 2011 Dec; 112(6):638-42. PubMed ID: 21889400 [TBL] [Abstract][Full Text] [Related]
16. Impact of inhibition of Qo site of mitochondrial complex III with myxothiazol on persistent sodium currents via superoxide and protein kinase C in rat hippocampal CA1 cells. Lai B; Zhang L; Dong LY; Zhu YH; Sun FY; Zheng P Neurobiol Dis; 2006 Jan; 21(1):206-16. PubMed ID: 16081299 [TBL] [Abstract][Full Text] [Related]
17. Generation of superoxide in cardiomyocytes during ischemia before reperfusion. Becker LB; vanden Hoek TL; Shao ZH; Li CQ; Schumacker PT Am J Physiol; 1999 Dec; 277(6):H2240-6. PubMed ID: 10600842 [TBL] [Abstract][Full Text] [Related]
18. Pro-oxidant mitochondrial matrix-targeted ubiquinone MitoQ10 acts as anti-oxidant at retarded electron transport or proton pumping within Complex I. Plecitá-Hlavatá L; Jezek J; Jezek P Int J Biochem Cell Biol; 2009; 41(8-9):1697-707. PubMed ID: 19433311 [TBL] [Abstract][Full Text] [Related]
19. Qo site of mitochondrial complex III is the source of increased superoxide after transient exposure to hydrogen peroxide. Viola HM; Hool LC J Mol Cell Cardiol; 2010 Nov; 49(5):875-85. PubMed ID: 20688078 [TBL] [Abstract][Full Text] [Related]
20. Mitochondrial complex I, aconitase, and succinate dehydrogenase during hypoxia-reoxygenation: modulation of enzyme activities by MnSOD. Powell CS; Jackson RM Am J Physiol Lung Cell Mol Physiol; 2003 Jul; 285(1):L189-98. PubMed ID: 12665464 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]