BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

171 related articles for article (PubMed ID: 22064481)

  • 41. Thermal dependency of RAG1 self-association properties.
    De P; Zhao S; Gwyn LM; Godderz LJ; Peak MM; Rodgers KK
    BMC Biochem; 2008 Jan; 9():5. PubMed ID: 18234093
    [TBL] [Abstract][Full Text] [Related]  

  • 42. The effect of Me2+ cofactors at the initial stages of V(D)J recombination.
    Santagata S; Aidinis V; Spanopoulou E
    J Biol Chem; 1998 Jun; 273(26):16325-31. PubMed ID: 9632694
    [TBL] [Abstract][Full Text] [Related]  

  • 43. The homeodomain region of Rag-1 reveals the parallel mechanisms of bacterial and V(D)J recombination.
    Spanopoulou E; Zaitseva F; Wang FH; Santagata S; Baltimore D; Panayotou G
    Cell; 1996 Oct; 87(2):263-76. PubMed ID: 8861910
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Cooperative recruitment of HMGB1 during V(D)J recombination through interactions with RAG1 and DNA.
    Little AJ; Corbett E; Ortega F; Schatz DG
    Nucleic Acids Res; 2013 Mar; 41(5):3289-301. PubMed ID: 23325855
    [TBL] [Abstract][Full Text] [Related]  

  • 45. The central domain of core RAG1 preferentially recognizes single-stranded recombination signal sequence heptamer.
    Peak MM; Arbuckle JL; Rodgers KK
    J Biol Chem; 2003 May; 278(20):18235-40. PubMed ID: 12644467
    [TBL] [Abstract][Full Text] [Related]  

  • 46. The RAG proteins and V(D)J recombination: complexes, ends, and transposition.
    Fugmann SD; Lee AI; Shockett PE; Villey IJ; Schatz DG
    Annu Rev Immunol; 2000; 18():495-527. PubMed ID: 10837067
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Mutations of acidic residues in RAG1 define the active site of the V(D)J recombinase.
    Kim DR; Dai Y; Mundy CL; Yang W; Oettinger MA
    Genes Dev; 1999 Dec; 13(23):3070-80. PubMed ID: 10601033
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Understanding how the V(D)J recombinase catalyzes transesterification: distinctions between DNA cleavage and transposition.
    Lu CP; Posey JE; Roth DB
    Nucleic Acids Res; 2008 May; 36(9):2864-73. PubMed ID: 18375979
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Structure-specific nuclease activity of RAGs is modulated by sequence, length and phase position of flanking double-stranded DNA.
    Kumari R; Raghavan SC
    FEBS J; 2015 Jan; 282(1):4-18. PubMed ID: 25327637
    [TBL] [Abstract][Full Text] [Related]  

  • 50. The RAG transposon is active through the deuterostome evolution and domesticated in jawed vertebrates.
    Morales Poole JR; Huang SF; Xu A; Bayet J; Pontarotti P
    Immunogenetics; 2017 Jun; 69(6):391-400. PubMed ID: 28451741
    [TBL] [Abstract][Full Text] [Related]  

  • 51. V(D)J recombination signal recognition: distinct, overlapping DNA-protein contacts in complexes containing RAG1 with and without RAG2.
    Swanson PC; Desiderio S
    Immunity; 1998 Jul; 9(1):115-25. PubMed ID: 9697841
    [TBL] [Abstract][Full Text] [Related]  

  • 52. An autoregulatory mechanism imposes allosteric control on the V(D)J recombinase by histone H3 methylation.
    Lu C; Ward A; Bettridge J; Liu Y; Desiderio S
    Cell Rep; 2015 Jan; 10(1):29-38. PubMed ID: 25543141
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Riches in RAGs: Revealing the V(D)J Recombinase through High-Resolution Structures.
    Rodgers KK
    Trends Biochem Sci; 2017 Jan; 42(1):72-84. PubMed ID: 27825771
    [TBL] [Abstract][Full Text] [Related]  

  • 54. A complex of RAG-1 and RAG-2 proteins persists on DNA after single-strand cleavage at V(D)J recombination signal sequences.
    Grawunder U; Lieber MR
    Nucleic Acids Res; 1997 Apr; 25(7):1375-82. PubMed ID: 9060432
    [TBL] [Abstract][Full Text] [Related]  

  • 55. DNA mismatches and GC-rich motifs target transposition by the RAG1/RAG2 transposase.
    Tsai CL; Chatterji M; Schatz DG
    Nucleic Acids Res; 2003 Nov; 31(21):6180-90. PubMed ID: 14576304
    [TBL] [Abstract][Full Text] [Related]  

  • 56. The DNA-bending protein, HMG1, is required for correct cleavage of 23 bp recombination signal sequences by recombination activating gene proteins in vitro.
    Yoshida T; Tsuboi A; Ishiguro Ki; Nagawa F; Sakano H
    Int Immunol; 2000 May; 12(5):721-9. PubMed ID: 10784618
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Molecular mechanism underlying RAG1/RAG2 synaptic complex formation.
    Shlyakhtenko LS; Gilmore J; Kriatchko AN; Kumar S; Swanson PC; Lyubchenko YL
    J Biol Chem; 2009 Jul; 284(31):20956-65. PubMed ID: 19502597
    [TBL] [Abstract][Full Text] [Related]  

  • 58. The architecture of the 12RSS in V(D)J recombination signal and synaptic complexes.
    Ciubotaru M; Surleac MD; Metskas LA; Koo P; Rhoades E; Petrescu AJ; Schatz DG
    Nucleic Acids Res; 2015 Jan; 43(2):917-31. PubMed ID: 25550426
    [TBL] [Abstract][Full Text] [Related]  

  • 59. V(D)J recombination catalyzed by mutant RAG proteins lacking consensus DNA-PK phosphorylation sites.
    Lin JM; Landree MA; Roth DB
    Mol Immunol; 1999 Dec; 36(18):1263-9. PubMed ID: 10684966
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Single-molecule analysis of RAG-mediated V(D)J DNA cleavage.
    Lovely GA; Brewster RC; Schatz DG; Baltimore D; Phillips R
    Proc Natl Acad Sci U S A; 2015 Apr; 112(14):E1715-23. PubMed ID: 25831509
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.