These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

144 related articles for article (PubMed ID: 2206490)

  • 1. An extracellular microelectrode array for monitoring electrogenic cells in culture.
    Connolly P; Clark P; Curtis AS; Dow JA; Wilkinson CD
    Biosens Bioelectron; 1990; 5(3):223-34. PubMed ID: 2206490
    [TBL] [Abstract][Full Text] [Related]  

  • 2. An array of microelectrodes to stimulate and record from cardiac cells in culture.
    Israel DA; Barry WH; Edell DJ; Mark RG
    Am J Physiol; 1984 Oct; 247(4 Pt 2):H669-74. PubMed ID: 6496708
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Nanostructured gold microelectrodes for extracellular recording from electrogenic cells.
    Brüggemann D; Wolfrum B; Maybeck V; Mourzina Y; Jansen M; Offenhäusser A
    Nanotechnology; 2011 Jul; 22(26):265104. PubMed ID: 21586820
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Description and demonstration of a CMOS amplifier-based-system with measurement and stimulation capability for bioelectrical signal transduction.
    Pancrazio JJ; Bey PP; Loloee A; Manne S; Chao HC; Howard LL; Gosney WM; Borkholder DA; Kovacs GT; Manos P; Cuttino DS; Stenger DA
    Biosens Bioelectron; 1998 Oct; 13(9):971-9. PubMed ID: 9839386
    [TBL] [Abstract][Full Text] [Related]  

  • 5. CMOS microelectrode array for the monitoring of electrogenic cells.
    Heer F; Franks W; Blau A; Taschini S; Ziegler C; Hierlemann A; Baltes H
    Biosens Bioelectron; 2004 Sep; 20(2):358-66. PubMed ID: 15308242
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A nanoporous alumina microelectrode array for functional cell-chip coupling.
    Wesche M; Hüske M; Yakushenko A; Brüggemann D; Mayer D; Offenhäusser A; Wolfrum B
    Nanotechnology; 2012 Dec; 23(49):495303. PubMed ID: 23150042
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Electrical properties of a light-addressable microelectrode chip with high electrode density for extracellular stimulation and recording of excitable cells.
    Bucher V; Brunner B; Leibrock C; Schubert M; Nisch W
    Biosens Bioelectron; 2001 May; 16(3):205-10. PubMed ID: 11339999
    [TBL] [Abstract][Full Text] [Related]  

  • 8. An endothelial cell compatible biosensor fabricated using optically thin indium tin oxide silicon nitride electrodes.
    Choi CK; English AE; Jun SI; Kihm KD; Rack PD
    Biosens Bioelectron; 2007 May; 22(11):2585-90. PubMed ID: 17113768
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Time delays in propagation of cardiac action potential.
    Israel DA; Edell DJ; Mark RG
    Am J Physiol; 1990 Jun; 258(6 Pt 2):H1906-17. PubMed ID: 2360678
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Advantages of using microfabricated extracellular electrodes for in vitro neuronal recording.
    Breckenridge LJ; Wilson RJ; Connolly P; Curtis AS; Dow JA; Blackshaw SE; Wilkinson CD
    J Neurosci Res; 1995 Oct; 42(2):266-76. PubMed ID: 8568928
    [TBL] [Abstract][Full Text] [Related]  

  • 11. DC microelectrode array for investigating the intracellular ion changes.
    Aryasomayajula A; Derix J; Perike S; Gerlach G; Funk RH
    Biosens Bioelectron; 2010 Dec; 26(4):1268-72. PubMed ID: 20656468
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Transparent poly(3,4-ethylenedioxythiophene)-based microelectrodes for extracellular recording.
    Flachs D; Köhler T; Thielemann C
    Biointerphases; 2018 Aug; 13(4):041008. PubMed ID: 30081642
    [TBL] [Abstract][Full Text] [Related]  

  • 13. High-resolution extracellular stimulation of dispersed hippocampal culture with high-density CMOS multielectrode array based on non-Faradaic electrodes.
    Lei N; Ramakrishnan S; Shi P; Orcutt JS; Yuste R; Kam LC; Shepard KL
    J Neural Eng; 2011 Aug; 8(4):044003. PubMed ID: 21725154
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Electrical stimulation of cultured myocardial cells.
    Mitchell RH; Bailey AH; Anderson JM; Gilmore WS
    J Biomed Eng; 1992 Jan; 14(1):52-6. PubMed ID: 1569739
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Skeletal myotube integration with planar microelectrode arrays in vitro for spatially selective recording and stimulation: a comparison of neuronal and myotube extracellular action potentials.
    Langhammer CG; Kutzing MK; Luo V; Zahn JD; Firestein BL
    Biotechnol Prog; 2011; 27(3):891-5. PubMed ID: 21574266
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Measurement of electrical activity of long-term mammalian neuronal networks on semiconductor neurosensor chips and comparison with conventional microelectrode arrays.
    Krause G; Lehmann S; Lehmann M; Freund I; Schreiber E; Baumann W
    Biosens Bioelectron; 2006 Jan; 21(7):1272-82. PubMed ID: 16006112
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A miniature microelectrode array to monitor the bioelectric activity of cultured cells.
    Thomas CA; Springer PA; Loeb GE; Berwald-Netter Y; Okun LM
    Exp Cell Res; 1972 Sep; 74(1):61-6. PubMed ID: 4672477
    [No Abstract]   [Full Text] [Related]  

  • 18. Validation of the use of field effect transistors for extracellular signal recording in pharmacological bioassays.
    Yeung CK; Ingebrandt S; Krause M; Offenhäusser A; Knoll W
    J Pharmacol Toxicol Methods; 2001; 45(3):207-14. PubMed ID: 11755384
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Extracellular recordings of field potentials from single cardiomyocytes.
    Klauke N; Smith GL; Cooper J
    Biophys J; 2006 Oct; 91(7):2543-51. PubMed ID: 16844752
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Localized electrical stimulation of in vitro neurons using an array of sub-cellular sized electrodes.
    Braeken D; Huys R; Loo J; Bartic C; Borghs G; Callewaert G; Eberle W
    Biosens Bioelectron; 2010 Dec; 26(4):1474-7. PubMed ID: 20727728
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.