BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

232 related articles for article (PubMed ID: 22065257)

  • 1. Identification of transcriptome profiles and signaling pathways for the allelochemical juglone in rice roots.
    Chi WC; Fu SF; Huang TL; Chen YA; Chen CC; Huang HJ
    Plant Mol Biol; 2011 Dec; 77(6):591-607. PubMed ID: 22065257
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Transcriptomic changes and signalling pathways induced by arsenic stress in rice roots.
    Huang TL; Nguyen QT; Fu SF; Lin CY; Chen YC; Huang HJ
    Plant Mol Biol; 2012 Dec; 80(6):587-608. PubMed ID: 22987115
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Autotoxicity mechanism of Oryza sativa: transcriptome response in rice roots exposed to ferulic acid.
    Chi WC; Chen YA; Hsiung YC; Fu SF; Chou CH; Trinh NN; Chen YC; Huang HJ
    BMC Genomics; 2013 May; 14():351. PubMed ID: 23705659
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Chromium stress response effect on signal transduction and expression of signaling genes in rice.
    Trinh NN; Huang TL; Chi WC; Fu SF; Chen CC; Huang HJ
    Physiol Plant; 2014 Feb; 150(2):205-24. PubMed ID: 24033343
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Transcriptome analysis of phytohormone, transporters and signaling pathways in response to vanadium stress in rice roots.
    Lin CY; Trinh NN; Lin CW; Huang HJ
    Plant Physiol Biochem; 2013 May; 66():98-104. PubMed ID: 23500712
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Spatio-temporal dynamics in global rice gene expression (Oryza sativa L.) in response to high ammonium stress.
    Sun L; Di D; Li G; Kronzucker HJ; Shi W
    J Plant Physiol; 2017 May; 212():94-104. PubMed ID: 28282528
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Early signalling pathways in rice roots under vanadate stress.
    Lin CW; Lin CY; Chang CC; Lee RH; Tsai TM; Chen PY; Chi WC; Huang HJ
    Plant Physiol Biochem; 2009 May; 47(5):369-76. PubMed ID: 19250836
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Transcriptome profiling and physiological studies reveal a major role for aromatic amino acids in mercury stress tolerance in rice seedlings.
    Chen YA; Chi WC; Trinh NN; Huang LY; Chen YC; Cheng KT; Huang TL; Lin CY; Huang HJ
    PLoS One; 2014; 9(5):e95163. PubMed ID: 24840062
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Comparative transcriptome profiles of the WRKY gene family under control, hormone-treated, and drought conditions in near-isogenic rice lines reveal differential, tissue specific gene activation.
    Nuruzzaman M; Sharoni AM; Satoh K; Kumar A; Leung H; Kikuchi S
    J Plant Physiol; 2014 Jan; 171(1):2-13. PubMed ID: 24189206
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Genes, pathways and transcription factors involved in seedling stage chilling stress tolerance in indica rice through RNA-Seq analysis.
    Pradhan SK; Pandit E; Nayak DK; Behera L; Mohapatra T
    BMC Plant Biol; 2019 Aug; 19(1):352. PubMed ID: 31412781
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Comparison of early transcriptome responses to copper and cadmium in rice roots.
    Lin CY; Trinh NN; Fu SF; Hsiung YC; Chia LC; Lin CW; Huang HJ
    Plant Mol Biol; 2013 Mar; 81(4-5):507-22. PubMed ID: 23400832
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Identification of early ammonium nitrate-responsive genes in rice roots.
    Yang HC; Kan CC; Hung TH; Hsieh PH; Wang SY; Hsieh WY; Hsieh MH
    Sci Rep; 2017 Dec; 7(1):16885. PubMed ID: 29203827
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Genomic profiling of rice roots with short- and long-term chromium stress.
    Huang TL; Huang LY; Fu SF; Trinh NN; Huang HJ
    Plant Mol Biol; 2014 Sep; 86(1-2):157-70. PubMed ID: 25056418
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Integrated RNA-Seq Analysis and Meta-QTLs Mapping Provide Insights into Cold Stress Response in Rice Seedling Roots.
    Kong W; Zhang C; Qiang Y; Zhong H; Zhao G; Li Y
    Int J Mol Sci; 2020 Jun; 21(13):. PubMed ID: 32610550
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Genome-wide transcriptome analysis of expression in rice seedling roots in response to supplemental nitrogen.
    Chandran AK; Priatama RA; Kumar V; Xuan Y; Je BI; Kim CM; Jung KH; Han CD
    J Plant Physiol; 2016 Aug; 200():62-75. PubMed ID: 27340859
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Transcriptional profiling of the PDR gene family in rice roots in response to plant growth regulators, redox perturbations and weak organic acid stresses.
    Moons A
    Planta; 2008 Dec; 229(1):53-71. PubMed ID: 18830621
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Co-expression network analysis of the transcriptomes of rice roots exposed to various cadmium stresses reveals universal cadmium-responsive genes.
    Tan M; Cheng D; Yang Y; Zhang G; Qin M; Chen J; Chen Y; Jiang M
    BMC Plant Biol; 2017 Nov; 17(1):194. PubMed ID: 29115926
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Spatial transcriptomes of iron-deficient and cadmium-stressed rice.
    Ogo Y; Kakei Y; Itai RN; Kobayashi T; Nakanishi H; Takahashi H; Nakazono M; Nishizawa NK
    New Phytol; 2014 Feb; 201(3):781-794. PubMed ID: 24188410
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Transcriptome analysis of rice root responses to potassium deficiency.
    Ma TL; Wu WH; Wang Y
    BMC Plant Biol; 2012 Sep; 12():161. PubMed ID: 22963580
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The APETALA-2-like transcription factor OsAP2-39 controls key interactions between abscisic acid and gibberellin in rice.
    Yaish MW; El-Kereamy A; Zhu T; Beatty PH; Good AG; Bi YM; Rothstein SJ
    PLoS Genet; 2010 Sep; 6(9):e1001098. PubMed ID: 20838584
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.