These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
125 related articles for article (PubMed ID: 22065511)
1. CONTINUOUS-TIME FILTERS FOR STATE ESTIMATION FROM POINT PROCESS MODELS OF NEURAL DATA. Eden UT; Brown EN Stat Sin; 2008; 18(4):1293-1310. PubMed ID: 22065511 [TBL] [Abstract][Full Text] [Related]
2. Construction of point process adaptive filter algorithms for neural systems using sequential Monte Carlo methods. Ergün A; Barbieri R; Eden UT; Wilson MA; Brown EN IEEE Trans Biomed Eng; 2007 Mar; 54(3):419-28. PubMed ID: 17355053 [TBL] [Abstract][Full Text] [Related]
3. Dynamic analysis of neural encoding by point process adaptive filtering. Eden UT; Frank LM; Barbieri R; Solo V; Brown EN Neural Comput; 2004 May; 16(5):971-98. PubMed ID: 15070506 [TBL] [Abstract][Full Text] [Related]
4. Sequential Monte Carlo point-process estimation of kinematics from neural spiking activity for brain-machine interfaces. Wang Y; Paiva AR; Príncipe JC; Sanchez JC Neural Comput; 2009 Oct; 21(10):2894-930. PubMed ID: 19548797 [TBL] [Abstract][Full Text] [Related]
5. A Nonlinear Stochastic Filter for Continuous-Time State Estimation. Ghoreyshi A; Sanger TD IEEE Trans Automat Contr; 2015 Aug; 60(8):2161-2165. PubMed ID: 26412871 [TBL] [Abstract][Full Text] [Related]
6. Identification of time-varying neural dynamics from spike train data using multiwavelet basis functions. Xu S; Li Y; Guo Q; Yang XF; Chan RHM J Neurosci Methods; 2017 Feb; 278():46-56. PubMed ID: 28062244 [TBL] [Abstract][Full Text] [Related]
7. Likelihood methods for point processes with refractoriness. Citi L; Ba D; Brown EN; Barbieri R Neural Comput; 2014 Feb; 26(2):237-63. PubMed ID: 24206384 [TBL] [Abstract][Full Text] [Related]
8. Efficient Decoding of Multi-Dimensional Signals From Population Spiking Activity Using a Gaussian Mixture Particle Filter. Yousefi A; Gillespie AK; Guidera JA; Karlsson M; Frank LM; Eden UT IEEE Trans Biomed Eng; 2019 Dec; 66(12):3486-3498. PubMed ID: 30932819 [TBL] [Abstract][Full Text] [Related]
9. A point process framework for relating neural spiking activity to spiking history, neural ensemble, and extrinsic covariate effects. Truccolo W; Eden UT; Fellows MR; Donoghue JP; Brown EN J Neurophysiol; 2005 Feb; 93(2):1074-89. PubMed ID: 15356183 [TBL] [Abstract][Full Text] [Related]
10. A point-process matched filter for event detection and decoding from population spike trains. Sadras N; Pesaran B; Shanechi MM J Neural Eng; 2019 Oct; 16(6):066016. PubMed ID: 31437831 [TBL] [Abstract][Full Text] [Related]
11. Estimating Multiscale Direct Causality Graphs in Neural Spike-Field Networks. Wang C; Shanechi MM IEEE Trans Neural Syst Rehabil Eng; 2019 May; 27(5):857-866. PubMed ID: 30932842 [TBL] [Abstract][Full Text] [Related]
12. Projection Filtering with Observed State Increments with Applications in Continuous-Time Circular Filtering. Kutschireiter A; Rast L; Drugowitsch J IEEE Trans Signal Process; 2022; 70():686-700. PubMed ID: 36338544 [TBL] [Abstract][Full Text] [Related]
13. Robust point-process Granger causality analysis in presence of exogenous temporal modulations and trial-by-trial variability in spike trains. Casile A; Faghih RT; Brown EN PLoS Comput Biol; 2021 Jan; 17(1):e1007675. PubMed ID: 33493162 [TBL] [Abstract][Full Text] [Related]
14. Estimating a state-space model from point process observations. Smith AC; Brown EN Neural Comput; 2003 May; 15(5):965-91. PubMed ID: 12803953 [TBL] [Abstract][Full Text] [Related]
15. The time-rescaling theorem and its application to neural spike train data analysis. Brown EN; Barbieri R; Ventura V; Kass RE; Frank LM Neural Comput; 2002 Feb; 14(2):325-46. PubMed ID: 11802915 [TBL] [Abstract][Full Text] [Related]
16. Neural Projection Filter: Learning Unknown Dynamics Driven by Noisy Observations. Tao Y; Kang J; Yau SS IEEE Trans Neural Netw Learn Syst; 2024 Jul; 35(7):9508-9522. PubMed ID: 37018644 [TBL] [Abstract][Full Text] [Related]
17. Optimal Decoding of Dynamic Stimuli by Heterogeneous Populations of Spiking Neurons: A Closed-Form Approximation. Harel Y; Meir R; Opper M Neural Comput; 2018 Aug; 30(8):2056-2112. PubMed ID: 29949463 [TBL] [Abstract][Full Text] [Related]
18. State-space analysis of time-varying higher-order spike correlation for multiple neural spike train data. Shimazaki H; Amari S; Brown EN; Grün S PLoS Comput Biol; 2012; 8(3):e1002385. PubMed ID: 22412358 [TBL] [Abstract][Full Text] [Related]
19. Monte Carlo point process estimation of electromyographic envelopes from motor cortical spikes for brain-machine interfaces. Liao Y; She X; Wang Y; Zhang S; Zhang Q; Zheng X; Principe JC J Neural Eng; 2015 Dec; 12(6):066014. PubMed ID: 26468607 [TBL] [Abstract][Full Text] [Related]
20. Total spiking probability edges: A cross-correlation based method for effective connectivity estimation of cortical spiking neurons. De Blasi S; Ciba M; Bahmer A; Thielemann C J Neurosci Methods; 2019 Jan; 312():169-181. PubMed ID: 30500352 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]