These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
125 related articles for article (PubMed ID: 22065562)
1. The nuclear proteome of the green alga Chlamydomonas reinhardtii. Winck FV; Riaño-Pachón DM; Sommer F; Rupprecht J; Mueller-Roeber B Proteomics; 2012 Jan; 12(1):95-100. PubMed ID: 22065562 [TBL] [Abstract][Full Text] [Related]
2. Proteomic profiling of oil bodies isolated from the unicellular green microalga Chlamydomonas reinhardtii: with focus on proteins involved in lipid metabolism. Nguyen HM; Baudet M; Cuiné S; Adriano JM; Barthe D; Billon E; Bruley C; Beisson F; Peltier G; Ferro M; Li-Beisson Y Proteomics; 2011 Nov; 11(21):4266-73. PubMed ID: 21928291 [TBL] [Abstract][Full Text] [Related]
3. Proteome turnover in the green alga Ostreococcus tauri by time course 15N metabolic labeling mass spectrometry. Martin SF; Munagapati VS; Salvo-Chirnside E; Kerr LE; Le Bihan T J Proteome Res; 2012 Jan; 11(1):476-86. PubMed ID: 22077659 [TBL] [Abstract][Full Text] [Related]
4. Application of quantitative immunoprecipitation combined with knockdown and cross-linking to Chlamydomonas reveals the presence of vesicle-inducing protein in plastids 1 in a common complex with chloroplast HSP90C. Heide H; Nordhues A; Drepper F; Nick S; Schulz-Raffelt M; Haehnel W; Schroda M Proteomics; 2009 Jun; 9(11):3079-89. PubMed ID: 19526558 [TBL] [Abstract][Full Text] [Related]
5. A proteomic survey of Chlamydomonas reinhardtii mitochondria sheds new light on the metabolic plasticity of the organelle and on the nature of the alpha-proteobacterial mitochondrial ancestor. Atteia A; Adrait A; Brugière S; Tardif M; van Lis R; Deusch O; Dagan T; Kuhn L; Gontero B; Martin W; Garin J; Joyard J; Rolland N Mol Biol Evol; 2009 Jul; 26(7):1533-48. PubMed ID: 19349646 [TBL] [Abstract][Full Text] [Related]
6. Comprehensive comparison of iTRAQ and label-free LC-based quantitative proteomics approaches using two Chlamydomonas reinhardtii strains of interest for biofuels engineering. Wang H; Alvarez S; Hicks LM J Proteome Res; 2012 Jan; 11(1):487-501. PubMed ID: 22059437 [TBL] [Abstract][Full Text] [Related]
7. Targeted proteomics for Chlamydomonas reinhardtii combined with rapid subcellular protein fractionation, metabolomics and metabolic flux analyses. Wienkoop S; Weiss J; May P; Kempa S; Irgang S; Recuenco-Munoz L; Pietzke M; Schwemmer T; Rupprecht J; Egelhofer V; Weckwerth W Mol Biosyst; 2010 Jun; 6(6):1018-31. PubMed ID: 20358043 [TBL] [Abstract][Full Text] [Related]
8. Proteotypic profiling of LHCI from Chlamydomonas reinhardtii provides new insights into structure and function of the complex. Stauber EJ; Busch A; Naumann B; Svatos A; Hippler M Proteomics; 2009 Jan; 9(2):398-408. PubMed ID: 19142947 [TBL] [Abstract][Full Text] [Related]
9. Dynamics of post-translational modifications and protein stability in the stroma of Chlamydomonas reinhardtii chloroplasts. Bienvenut WV; Espagne C; Martinez A; Majeran W; Valot B; Zivy M; Vallon O; Adam Z; Meinnel T; Giglione C Proteomics; 2011 May; 11(9):1734-50. PubMed ID: 21462344 [TBL] [Abstract][Full Text] [Related]
10. Sub-proteome analysis in the green flagellate alga Chlamydomonas reinhardtii. Wagner V; Boesger J; Mittag M J Basic Microbiol; 2009 Feb; 49(1):32-41. PubMed ID: 19253330 [TBL] [Abstract][Full Text] [Related]
11. Defining the boundaries and characterizing the landscape of functional genome expression in vascular tissues of Populus using shotgun proteomics. Abraham P; Adams R; Giannone RJ; Kalluri U; Ranjan P; Erickson B; Shah M; Tuskan GA; Hettich RL J Proteome Res; 2012 Jan; 11(1):449-60. PubMed ID: 22003893 [TBL] [Abstract][Full Text] [Related]
12. Proteomic analysis of high-CO(2)-inducible extracellular proteins in the unicellular green alga, Chlamydomonas reinhardtii. Baba M; Suzuki I; Shiraiwa Y Plant Cell Physiol; 2011 Aug; 52(8):1302-14. PubMed ID: 21680606 [TBL] [Abstract][Full Text] [Related]
13. Exploring the nuclear proteome of Medicago truncatula at the switch towards seed filling. Repetto O; Rogniaux H; Firnhaber C; Zuber H; Küster H; Larré C; Thompson R; Gallardo K Plant J; 2008 Nov; 56(3):398-410. PubMed ID: 18643982 [TBL] [Abstract][Full Text] [Related]
14. Dual functions of the nucleus-encoded factor TDA1 in trapping and translation activation of atpA transcripts in Chlamydomonas reinhardtii chloroplasts. Eberhard S; Loiselay C; Drapier D; Bujaldon S; Girard-Bascou J; Kuras R; Choquet Y; Wollman FA Plant J; 2011 Sep; 67(6):1055-66. PubMed ID: 21623973 [TBL] [Abstract][Full Text] [Related]
15. Mass spectrometric genomic data mining: Novel insights into bioenergetic pathways in Chlamydomonas reinhardtii. Allmer J; Naumann B; Markert C; Zhang M; Hippler M Proteomics; 2006 Dec; 6(23):6207-20. PubMed ID: 17078018 [TBL] [Abstract][Full Text] [Related]
16. Characterisation of the nuclear proteome of a dehydration-sensitive cultivar of chickpea and comparative proteomic analysis with a tolerant cultivar. Subba P; Kumar R; Gayali S; Shekhar S; Parveen S; Pandey A; Datta A; Chakraborty S; Chakraborty N Proteomics; 2013 Jun; 13(12-13):1973-92. PubMed ID: 23798506 [TBL] [Abstract][Full Text] [Related]
17. Generation of the heterodimeric precursor GP3 of the Chlamydomonas cell wall. Voigt J; Kiess M; Getzlaff R; Wöstemeyer J; Frank R Mol Microbiol; 2010 Sep; 77(6):1512-26. PubMed ID: 20662780 [TBL] [Abstract][Full Text] [Related]
19. Proteome dynamics and early salt stress response of the photosynthetic organism Chlamydomonas reinhardtii. Mastrobuoni G; Irgang S; Pietzke M; Assmus HE; Wenzel M; Schulze WX; Kempa S BMC Genomics; 2012 May; 13():215. PubMed ID: 22651860 [TBL] [Abstract][Full Text] [Related]
20. Proteome profiling of the green sulfur bacterium Chlorobaculum tepidum by N-terminal proteomics. Kouyianou K; De Bock PJ; Colaert N; Nikolaki A; Aktoudianaki A; Gevaert K; Tsiotis G Proteomics; 2012 Jan; 12(1):63-7. PubMed ID: 22065552 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]