BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

185 related articles for article (PubMed ID: 22065604)

  • 1. The conversion of nickel-bound CO into an acetyl thioester: organometallic chemistry relevant to the acetyl coenzyme A synthase active site.
    Horn B; Limberg C; Herwig C; Mebs S
    Angew Chem Int Ed Engl; 2011 Dec; 50(52):12621-5. PubMed ID: 22065604
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Binding of CO to structural models of the bimetallic subunit at the A-cluster of acetyl coenzyme A synthase/CO dehydrogenase.
    Harrop TC; Olmstead MM; Mascharak PK
    Chem Commun (Camb); 2004 Aug; (15):1744-5. PubMed ID: 15278165
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Structural models of the bimetallic subunit at the A-cluster of acetyl coenzyme a synthase/CO dehydrogenase: binuclear sulfur-bridged Ni-Cu and Ni-Ni complexes and their reactions with CO.
    Harrop TC; Olmstead MM; Mascharak PK
    J Am Chem Soc; 2004 Nov; 126(45):14714-5. PubMed ID: 15535684
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Crystallographic evidence for a CO/CO(2) tunnel gating mechanism in the bifunctional carbon monoxide dehydrogenase/acetyl coenzyme A synthase from Moorella thermoacetica.
    Volbeda A; Fontecilla-Camps JC
    J Biol Inorg Chem; 2004 Jul; 9(5):525-32. PubMed ID: 15221479
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Structure and electronic properties of an asymmetric thiolate-bridged binuclear complex: a model for the active site of acetyl CoA synthase.
    Wang Q; Blake AJ; Davies ES; McInnes EJ; Wilson C; Schröder M
    Chem Commun (Camb); 2003 Dec; (24):3012-3. PubMed ID: 14703833
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Different modes of carbon monoxide binding to acetyl-CoA synthase and the role of a conserved phenylalanine in the coordination environment of nickel.
    Gencic S; Kelly K; Ghebreamlak S; Duin EC; Grahame DA
    Biochemistry; 2013 Mar; 52(10):1705-16. PubMed ID: 23394607
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Nickel and the carbon cycle.
    Ragsdale SW
    J Inorg Biochem; 2007 Nov; 101(11-12):1657-66. PubMed ID: 17716738
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Enzymology. A trio of transition metals in anaerobic CO2 fixation.
    Peters JW
    Science; 2002 Oct; 298(5593):552-3. PubMed ID: 12386322
    [No Abstract]   [Full Text] [Related]  

  • 9. A Ni-Fe-Cu center in a bifunctional carbon monoxide dehydrogenase/acetyl-CoA synthase.
    Doukov TI; Iverson TM; Seravalli J; Ragsdale SW; Drennan CL
    Science; 2002 Oct; 298(5593):567-72. PubMed ID: 12386327
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Kinetics of CO insertion and acetyl group transfer steps, and a model of the acetyl-CoA synthase catalytic mechanism.
    Tan X; Surovtsev IV; Lindahl PA
    J Am Chem Soc; 2006 Sep; 128(37):12331-8. PubMed ID: 16967985
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Enzymology. Nickel to the fore.
    Thauer RK
    Science; 2001 Aug; 293(5533):1264-5. PubMed ID: 11509713
    [No Abstract]   [Full Text] [Related]  

  • 12. Model Complexes for the Ni
    Bhandari A; Chandra Maji R; Mishra S; Kumar A; Barman SK; Das PP; Ghiassi KB; Olmstead MM; Patra AK
    Inorg Chem; 2018 Nov; 57(21):13713-13727. PubMed ID: 30339375
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Structural bases for the catalytic mechanism of Ni-containing carbon monoxide dehydrogenases.
    Volbeda A; Fontecilla-Camps JC
    Dalton Trans; 2005 Nov; (21):3443-50. PubMed ID: 16234923
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Reactions of monodithiolene tungsten(VI) sulfido complexes with copper(I) in relation to the structure of the active site of carbon monoxide dehydrogenase.
    Groysman S; Majumdar A; Zheng SL; Holm RH
    Inorg Chem; 2010 Feb; 49(3):1082-9. PubMed ID: 20030373
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Nature's carbonylation catalyst: Raman spectroscopic evidence that carbon monoxide binds to iron, not nickel, in CO dehydrogenase.
    Qiu D; Kumar M; Ragsdale SW; Spiro TG
    Science; 1994 May; 264(5160):817-9. PubMed ID: 8171334
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A role for nickel-iron cofactors in biological carbon monoxide and carbon dioxide utilization.
    Kung Y; Drennan CL
    Curr Opin Chem Biol; 2011 Apr; 15(2):276-83. PubMed ID: 21130022
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Carbon monoxide. Toxic gas and fuel for anaerobes and aerobes: carbon monoxide dehydrogenases.
    Jeoung JH; Fesseler J; Goetzl S; Dobbek H
    Met Ions Life Sci; 2014; 14():37-69. PubMed ID: 25416390
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Gas channel rerouting in a primordial enzyme: Structural insights of the carbon-monoxide dehydrogenase/acetyl-CoA synthase complex from the acetogen Clostridium autoethanogenum.
    Lemaire ON; Wagner T
    Biochim Biophys Acta Bioenerg; 2021 Jan; 1862(1):148330. PubMed ID: 33080205
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Investigations of the efficient electrocatalytic interconversions of carbon dioxide and carbon monoxide by nickel-containing carbon monoxide dehydrogenases.
    Wang VC; Ragsdale SW; Armstrong FA
    Met Ions Life Sci; 2014; 14():71-97. PubMed ID: 25416391
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Ni and CO: more surprises.
    Hausinger RP
    Nat Struct Biol; 2003 Apr; 10(4):234-6. PubMed ID: 12660715
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 10.