These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

186 related articles for article (PubMed ID: 22065604)

  • 41. New insights into the mechanism of nickel insertion into carbon monoxide dehydrogenase: analysis of Rhodospirillum rubrum carbon monoxide dehydrogenase variants with substituted ligands to the [Fe3S4] portion of the active-site C-cluster.
    Jeon WB; Singer SW; Ludden PW; Rubio LM
    J Biol Inorg Chem; 2005 Dec; 10(8):903-12. PubMed ID: 16283394
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Acetyl-coenzyme A synthase: the case for a Ni(p)(0)-based mechanism of catalysis.
    Lindahl PA
    J Biol Inorg Chem; 2004 Jul; 9(5):516-24. PubMed ID: 15221478
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Ni-Zn-[Fe4-S4] and Ni-Ni-[Fe4-S4] clusters in closed and open subunits of acetyl-CoA synthase/carbon monoxide dehydrogenase.
    Darnault C; Volbeda A; Kim EJ; Legrand P; Vernède X; Lindahl PA; Fontecilla-Camps JC
    Nat Struct Biol; 2003 Apr; 10(4):271-9. PubMed ID: 12627225
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Residues surrounding the active centre of carbon monoxide dehydrogenase are key in converting [Formula: see text] to CO.
    Terranova U
    J Biol Inorg Chem; 2021 Aug; 26(5):617-624. PubMed ID: 34255144
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Coupling CO
    Ruickoldt J; Jeoung JH; Rudolph MA; Lennartz F; Kreibich J; Schomäcker R; Dobbek H
    Angew Chem Int Ed Engl; 2024 Jul; 63(31):e202405120. PubMed ID: 38743001
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Highly selective electrocatalytic conversion of CO2 to CO at -0.57 V (NHE) by carbon monoxide dehydrogenase from Moorella thermoacetica.
    Shin W; Lee SH; Shin JW; Lee SP; Kim Y
    J Am Chem Soc; 2003 Dec; 125(48):14688-9. PubMed ID: 14640627
    [TBL] [Abstract][Full Text] [Related]  

  • 47. A series of mononuclear quasi-two-coordinate copper(I) complexes employing a sterically demanding thiolate ligand.
    Groysman S; Holm RH
    Inorg Chem; 2009 Jan; 48(2):621-7. PubMed ID: 19138143
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Surprising cofactors in metalloenzymes.
    Drennan CL; Peters JW
    Curr Opin Struct Biol; 2003 Apr; 13(2):220-6. PubMed ID: 12727516
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Modeling carbon monoxide dehydrogenase/acetyl-CoA synthase (CODH/ACS): a trinuclear nickel complex employing deprotonated amides and bridging thiolates.
    Hatlevik Ø; Blanksma MC; Mathrubootham V; Arif AM; Hegg EL
    J Biol Inorg Chem; 2004 Mar; 9(2):238-46. PubMed ID: 14735332
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Reactivity of a paramagnetic enzyme--CO adduct in acetyl-CoA synthesis and cleavage.
    Grahame DA; Khangulov S; DeMoll E
    Biochemistry; 1996 Jan; 35(2):593-600. PubMed ID: 8555232
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Computational studies on the A cluster of acetyl-coenzyme A synthase: geometric and electronic properties of the NiFeC species and mechanistic implications.
    Schenker RP; Brunold TC
    J Am Chem Soc; 2003 Nov; 125(46):13962-3. PubMed ID: 14611224
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Rapid and efficient electrocatalytic CO2/CO interconversions by Carboxydothermus hydrogenoformans CO dehydrogenase I on an electrode.
    Parkin A; Seravalli J; Vincent KA; Ragsdale SW; Armstrong FA
    J Am Chem Soc; 2007 Aug; 129(34):10328-9. PubMed ID: 17672466
    [No Abstract]   [Full Text] [Related]  

  • 53. Effect of sodium sulfide on Ni-containing carbon monoxide dehydrogenases.
    Feng J; Lindahl PA
    J Am Chem Soc; 2004 Jul; 126(29):9094-100. PubMed ID: 15264843
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Structural models for the active site of acetyl-CoA synthase: synthesis of dinuclear nickel complexes having thiolate, isocyanide, and thiourea on the Ni(p) site.
    Ito M; Kotera M; Song Y; Matsumoto T; Tatsumi K
    Inorg Chem; 2009 Feb; 48(3):1250-6. PubMed ID: 19128153
    [TBL] [Abstract][Full Text] [Related]  

  • 55. One Model, Two Enzymes: Activation of Hydrogen and Carbon Monoxide.
    Ogo S; Mori Y; Ando T; Matsumoto T; Yatabe T; Yoon KS; Hayashi H; Asano M
    Angew Chem Int Ed Engl; 2017 Aug; 56(33):9723-9726. PubMed ID: 28585418
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Reactions of the terminal Ni(II)-OH group in substitution and electrophilic reactions with carbon dioxide and other substrates: structural definition of binding modes in an intramolecular Ni(II)...Fe(II) bridged site.
    Huang D; Holm RH
    J Am Chem Soc; 2010 Apr; 132(13):4693-701. PubMed ID: 20218565
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Spectroscopic states of the CO oxidation/CO2 reduction active site of carbon monoxide dehydrogenase and mechanistic implications.
    Anderson ME; Lindahl PA
    Biochemistry; 1996 Jun; 35(25):8371-80. PubMed ID: 8679595
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Multielectron Chemistry within a Model Nickel Metalloprotein: Mechanistic Implications for Acetyl-CoA Synthase.
    Manesis AC; O'Connor MJ; Schneider CR; Shafaat HS
    J Am Chem Soc; 2017 Aug; 139(30):10328-10338. PubMed ID: 28675928
    [TBL] [Abstract][Full Text] [Related]  

  • 59. X-Ray Crystallography of Carbon Monoxide Dehydrogenases.
    Jeoung JH; Martins BM; Dobbek H
    Methods Mol Biol; 2019; 1876():167-178. PubMed ID: 30317481
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Thioester synthesis by a designed nickel enzyme models prebiotic energy conversion.
    Manesis AC; Yerbulekova A; Shearer J; Shafaat HS
    Proc Natl Acad Sci U S A; 2022 Jul; 119(30):e2123022119. PubMed ID: 35858422
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.