These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

206 related articles for article (PubMed ID: 22065766)

  • 1. The musculoskeletal system of humans is not tuned to maximize the economy of locomotion.
    Carrier DR; Anders C; Schilling N
    Proc Natl Acad Sci U S A; 2011 Nov; 108(46):18631-6. PubMed ID: 22065766
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The interplay between gastrocnemius medialis force-length and force-velocity potentials, cumulative EMG activity and energy cost at speeds above and below the walk to run transition speed.
    Monte A; Tecchio P; Nardello F; Bachero-Mena B; Ardigò LP; Zamparo P
    Exp Physiol; 2023 Jan; 108(1):90-102. PubMed ID: 36394370
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Optimal speeds for walking and running, and walking on a moving walkway.
    Srinivasan M
    Chaos; 2009 Jun; 19(2):026112. PubMed ID: 19566272
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Energy cost and lower leg muscle activities during erect bipedal locomotion under hyperoxia.
    Abe D; Fukuoka Y; Maeda T; Horiuchi M
    J Physiol Anthropol; 2018 Jun; 37(1):18. PubMed ID: 29914562
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Preferred gait and walk-run transition speeds in ostriches measured using GPS-IMU sensors.
    Daley MA; Channon AJ; Nolan GS; Hall J
    J Exp Biol; 2016 Oct; 219(Pt 20):3301-3308. PubMed ID: 27802152
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Swing- and support-related muscle actions differentially trigger human walk-run and run-walk transitions.
    Prilutsky BI; Gregor RJ
    J Exp Biol; 2001 Jul; 204(Pt 13):2277-87. PubMed ID: 11507111
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Gait selection in the ostrich: mechanical and metabolic characteristics of walking and running with and without an aerial phase.
    Rubenson J; Heliams DB; Lloyd DG; Fournier PA
    Proc Biol Sci; 2004 May; 271(1543):1091-9. PubMed ID: 15293864
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Contributions to the understanding of gait control.
    Simonsen EB
    Dan Med J; 2014 Apr; 61(4):B4823. PubMed ID: 24814597
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Vaulting mechanics successfully predict decrease in walk-run transition speed with incline.
    Hubel TY; Usherwood JR
    Biol Lett; 2013 Apr; 9(2):20121121. PubMed ID: 23325739
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Neuromusculoskeletal model that walks and runs across a speed range with a few motor control parameter changes based on the muscle synergy hypothesis.
    Aoi S; Ohashi T; Bamba R; Fujiki S; Tamura D; Funato T; Senda K; Ivanenko Y; Tsuchiya K
    Sci Rep; 2019 Jan; 9(1):369. PubMed ID: 30674970
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Walking, running, and resting under time, distance, and average speed constraints: optimality of walk-run-rest mixtures.
    Long LL; Srinivasan M
    J R Soc Interface; 2013 Apr; 10(81):20120980. PubMed ID: 23365192
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Children and adults minimise activated muscle volume by selecting gait parameters that balance gross mechanical power and work demands.
    Hubel TY; Usherwood JR
    J Exp Biol; 2015 Sep; 218(Pt 18):2830-9. PubMed ID: 26400978
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Joint-level mechanics of the walk-to-run transition in humans.
    Pires NJ; Lay BS; Rubenson J
    J Exp Biol; 2014 Oct; 217(Pt 19):3519-27. PubMed ID: 25104752
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Gait-specific energetics contributes to economical walking and running in emus and ostriches.
    Watson RR; Rubenson J; Coder L; Hoyt DF; Propert MW; Marsh RL
    Proc Biol Sci; 2011 Jul; 278(1714):2040-6. PubMed ID: 21123267
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Walking beyond preferred transition speed increases muscle activations with a shift from inverted pendulum to spring mass model in lower extremity.
    Shih Y; Chen YC; Lee YS; Chan MS; Shiang TY
    Gait Posture; 2016 May; 46():5-10. PubMed ID: 27131169
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Preferred and energetically optimal gait transition speeds in human locomotion.
    Hreljac A
    Med Sci Sports Exerc; 1993 Oct; 25(10):1158-62. PubMed ID: 8231761
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Energetics and optimization of human walking and running: the 2000 Raymond Pearl memorial lecture.
    McNeill Alexander R
    Am J Hum Biol; 2002; 14(5):641-8. PubMed ID: 12203818
    [TBL] [Abstract][Full Text] [Related]  

  • 18. More than energy cost: multiple benefits of the long Achilles tendon in human walking and running.
    Blazevich AJ; Fletcher JR
    Biol Rev Camb Philos Soc; 2023 Dec; 98(6):2210-2225. PubMed ID: 37525526
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Hindlimb muscle function in relation to speed and gait: in vivo patterns of strain and activation in a hip and knee extensor of the rat (Rattus norvegicus).
    Gillis GB; Biewener AA
    J Exp Biol; 2001 Aug; 204(Pt 15):2717-31. PubMed ID: 11533122
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Human medial gastrocnemius force-velocity behavior shifts with locomotion speed and gait.
    Farris DJ; Sawicki GS
    Proc Natl Acad Sci U S A; 2012 Jan; 109(3):977-82. PubMed ID: 22219360
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.